The application of variational methods to atomic scattering problems II. Impact excitation of the 2s level of atomic hydrogen-distorted wave treatment

The cross-section for excitation of the 2 S level of atomic hydrogen by electrons is calculated using the distorted wave method with full allowance for exchange. The distorted wave functions used in the calculations are determined by Hulthèn’s variational method. The initial wave functions, representing the motion of an electron in the field of a normal atom with allowance for exchange, are taken to be those calculated by Massey & Moiseiwitsch (1950). The final wave functions, representing the motion of an electron in the field of a hydrogen atom in the 2 S state, have been obtained by a modification of the same method. Exchange effects are found to be less important in determining the forms of these wave functions. The cross-sections obtained are considerably smaller than those calculated by the Born-Oppenheimer method, in which the electron wave functions are undistorted plane waves. This is largely because the symmetrical cross-section, which has the greater weight in determining the mean cross-section, is much greater than the antisymmetrical according to the Born-Oppenheimer method, but the reverse is true if distortion is allowed for. In no case does the distorted wave method give results exceeding the theoretical upper limit, whereas with plane waves this limit is exceeded at certain electron energies by the symmetrical cross-section.

The calculation of ionization cross-sections is described. For O 5+ a Coulomb-Born-Oppenheimer method is used. Previous calculations for O 4+ with the distorted wave method are corrected and extended. The results are given in tables 1 to 4 and in figure 1. For O 4+ (ionization energy E i — 8·37 x 13·6 eV) the cross-section Q has its maximum at an energy of the incident electron E = 2·3 E i : Q max. = 2·74 x 10 -2 π a 2 0 = 2·42 x 10 -18 cm 2 . For O 5+ ( E i = 10·15 x 13·6 eV) the maximum is at E = 1·85 E i : Q max. = 0·97 x 10 -2 π a 2 0 = 0·86 x 10 -18 cm 2 . The corresponding reduced cross-sections Q red. = ( E i /13·6 eV ) 2 x Q /Kζπ a 2 0 ) are for O 4+ (ζ = 2): Q red. = 0·96, and for O 5+ (ζ = 1): Q red. = 1·00. The results are similar to those of Rudge & Burgess (1962) for hydrogenic ions.


1961 ◽  
Vol 16 (6) ◽  
pp. 583-598 ◽  
Author(s):  
F. B. Malik ◽  
E. Trefftz

The ionization cross-section of highly ionized oxygen, O4+, is calculated according to the “distorted-wave” method. Exchange between the scattered and the ejected electron is taken into account as far as it is of long range nature. It is shown that contributions of high total angular momentum L are essential, L=0 giving only 3% of the total cross-section. This result should qualitatively be the same for all highly ionized atoms, whereas the following seems to be a special feature of O V ionization: for energies around twice the ionization energy the contributions of the optically allowed transitions of the ejected electron (angular momentum lej=1) are relatively small. The contributions of lej =0, 1, 2 and 3 are about 16%, 18%, 24% and 19% respectively for E=20.13.6 eV=2.39 × Ionization energy. The maximum cross section is 0.112 at. u. = 0.31 ·10-18 cm2 for electrons of 310 eV kinetic energy (2.8 × ionization energy). It is about twice as large as given by the ELWERT formula.


An expression for the cross-section describing electron capture by protons in atomic hydrogen is derived from an expansion based on atomic wave functions. Full account is taken of momentum transfer and of the non-orthogonality of the wave functions of the initial and final states by the method due to Bates. The cross-sections have been computed for proton energies from 100 to 1 MeV. In the low energy limit, the results agree with the p.s.s. calculations of Dalgarno & Yadav and in the high energy limit with the calculations of Brinkm an & Kramers.


2005 ◽  
Vol 72 (1) ◽  
Author(s):  
M. S. Pindzola ◽  
F. Robicheaux ◽  
J. A. Ludlow ◽  
J. Colgan ◽  
D. C. Griffin

Sign in / Sign up

Export Citation Format

Share Document