The pyrolysis of benzoyl bromide and the determination of the relevant bond dissociation energies

Pyrolysis of benzoyl bromide in the presence of excess of toluene has been investigated. It has been shown that the rate-determining step is the unimolecular dissociation C 6 H 5 . CO. Br → C 6 H 5 . CO + Br, followed by the rapid decomposition of benzoyl radicals C 6 H 5 . CO → C 6 H 5 ⋅ + CO. Bromine atoms and phenyl radicals seem to be removed from the system by the reactions C 6 H 5 . CH 3 + Br → C 6 H 5 . CH 2 ⋅ + HBr and C 6 H 5 . CH 3 + Ph ⋅→ C 6 H 5 . CH 2 ⋅ + C 6 H 6 . The activation energy of the rate-determining dissociation process has been estimated using the least square method at 57⋅0 kcal/mole and has been identified with D (C 6 H 5 ⋅ CO-Br). Thus, having D (C 6 H 5 ⋅ CO-Br) = 57⋅0 kcal/mole, the heat of formation of benzoyl radicals has been calculated at ∆ H f (C 6 H 5 . CO) = 15⋅6 kcal/mole, and consequently the values for various bond dissociation energies of the type D (C 6 H 5 . CO- X ) have been derived.

The ‘toluene-carrier’ technique has been used for the determination of the C—Br bond dissociation energies in the substituted benzyl bromides: p -, m - and o -xylyl bromides; p -, m - and o -chlorobenzyl bromides; p - and m -bromobenzyl bromides; p - and m -nitrobenzyl bromides; and p - and m -nitrilebenzyl bromides. The rate-determining step of the decompositions of all these compounds is represented by the unimolecular dissociation processes ( s ) Ph s . CH 2 . Br → Ph s . CH 2 • + Br, ( s ) where Ph s . CH 2 . Br refers to the substituted benzyl bromide. Assuming that the frequency factor of the decomposition of each benzyl bromide is equal to the frequency factor of reaction ( u ) Ph . CH 2 . Br → Ph . CH 2 • + Br, ( u ) the differences in activation energies between E u and E s were calculated using the relation E u ─ E s = RT In ( k s / k u ); (I) k s and k u denote the unimolecular rate constants of reactions ( s ) and ( u ) respectively. Since E s and E u are equal to the C—Br bond dissociation energies in the substituted benzyl bromides and benzyl bromide itself, equation (I) yields the differences, ∆ D’ s, between D ( Ph . CH 2 —Br) and the values for D ( Ph s . CH 2 —Br). The calculated differences in the C—Br bond dissociation energies are listed below: substituted ∆ D substituted ∆ D benzyl bromides (kcal. /mole) benzyl bromides (kcal. /mole) o -chloro 0·9 m -methyl 0-0 m -chloro 0·1 p -methyl 1·4 p -chloro 0·4 m -nitro 2·1 m -bromo 0·3 p -nitro 1·1 p -bromo 0·3 m -nitrile 1·4 o -methyl 2·0 p -nitrile 0·7 The significance of these findings is discussed, and the effect of substitution on a bond energy is contrasted with the effect of ionic reactions.


The equilibrium constants of the two reactions C 2 H 4 + H X = C 2 H 5 X , where X = Cl or Br, have been measured for X = Cl from 449 to 491° K, and for X = Br from 515 to 573° K, The methods of preparing and purifying the substances used, of carrying out the analyses and of determining the equilibrium constants have been described. The results for the ethyl chloride equilibrium were combined with calculations of the entropy change using Gordon & Giauque’s barrier height in ethyl chloride of 3700 cal/mole to obtain a value for the heat content change. The value for this, corrected to 298° K, is 17·1 kcal/mole. This leads to a heat of formation of ethyl chloride of – 26·7 and a heat of dissociation of the C—Cl bond in ethyl chloride of 80·9 kcal/mole. For the ethyl bromide equilibrium, the entropy change was calculated using barrier heights in ethyl bromide of 3000, 4000 and 5000 cal/mole. Using the entropy changes calculated it was concluded that the heat of reaction, corrected to 298° K, is within 0·3 kcal/mole of 19·1. This leads to a heat of formation of ethyl bromide of – 15·3 and a heat of dissociation of the C—Br bond in ethyl bromide of 67·2 kcal/mole. The two bond dissociation energies have been incorporated in the recent tables of Mortimer, Pritchard & Skinner listing such energies. The significance of the values for the bond dissociation energies in the series of RX molecules, where R = Me, Et, n-Pr, n-Bu, iso-Pr and tert.-Bu , and X = H, Cl and Br have been discussed.


1967 ◽  
Vol 45 (6) ◽  
pp. 641-648 ◽  
Author(s):  
D. R. Bidinosti ◽  
N. S. McIntyre

The mass spectra and appearance potentials for the major ions from Ni(CO)4, Fe(CO)5, Cr(CO)6, Mo(CO)6, W(CO)6, and V(CO)6 have been measured. Heats of formation have been calculated for 39 ions of the type M(CO)n+, where M = Ni, Fe, Cr, Mo, W, and V. The mean metal–carbon bond dissociation energies have been calculated for both the neutral molecules and the parent ions. From a comparison with the available thermochemical data for the neutral molecules it is concluded that the mean vanadium–carbon bond dissociation energy is 28 kcal/mole and the heat of formation of V(CO)6 vapor is − 204 kcal/mole.


1974 ◽  
Vol 52 (15) ◽  
pp. 2673-2678 ◽  
Author(s):  
Michael J. Krech ◽  
Stanley James W. Price ◽  
Wayne F. Yared

The heat of formation of iodopentafluorobenzene has been determined using the direct combustion method previously developed and used for hexafluorobenzene and octafluorotoluene. The combustion with oxygen yields CO2, CF4, F2, I2, and IF5. With a tenfold excess of oxygen the average CO2 to CF4 molar ratio is 11.08 ± 0.028. A material balance was obtained for carbon and fluorine. An apparent shortfall of about 30% in iodine has been related to the formation of IO2(OH) during analysis. The value of ΔHf2980 (C6F5I,g) = −133.2 ± 3.0 kcal mol−1 has been combined with D(C6F5—I) and ΔHf2980(I, g) to obtain ΔHf2980(C6F5,g) = −92.6 kcal mol−1 Using this value and the appropriate values of ΔHf2980 (C6F5X,g) and ΔHf2980(X, g), values of D(C6F5—X) have been calculated for X = OH, H, F, Cl, I, CH3, and CF3.


Investigation of the pyrolyses of bromobenzene, β -bromonaphthalene, α -bromonaphthalene, 9-bromophenanthrene and 9-bromoanthraeene in the presence of an excess of toluene has shown that reaction (1) Ar .Br → Ar • + Br (1) is the primary and rate-determining step of the pyrolysis. The progress of reaction was measured by the rate of formation of hydrogen bromide, and it was shown that this rate obeys first-order kinetics. The following values were obtained for the activation energies and frequency factors of unimolecular decompositions represented by equation (1): compound E (kcal/mole) 10 -13 v (sec -1 ) bromobenzene 70.9 2 β -bromonaphthalene 700 1.5 α -bromonaphthalene 70.9 3.5 9-bromophenanthrene 67.7 1 9-bromoanthracene 65.6 1.5 Assuming that recombination of bromine atoms with aromatic radicals does not involve any activation energy we conclude tha t the determined activation energies correspond to the respective C—Br bond dissociation energies. The effect of molecular structure on the C—Br bond dissociation energy is discussed. The heat of formation of the phenyl radical is determined, and this result is used for calculating the various Ph — X bond dissociation energies.


The pyrolyses of methyl bromide and of the halogenated bromomethanes, CH 2 CI. Br, CH 2 Br 2 , CHCl 2 .Br, CHBr 3 , CF 3 Br, CCI 3 . Br and CBr 4 , have been investigated by the ‘toluene-carrier' technique. It has been shown that all these decompositions were initiated by the unimolecular process R Br → R + Br. (1) Since all these decompositions were carried out in the presence of an excess of toluene, the bromine atoms produced in process (1) were readily removed by the fast reaction C 6 H 5 .CH 3 + Br → C 6 H 5 . CH 2 • + HBr. Hence, the rate of the unimolecular process (1) has been measured by the rate of formation of HBr. The C—Br bond dissociation energies were assumed to be equal to the activation energies of the relevant unimolecular dissociation processes. These were calculated by using the expression k ═ 2 x 10 13 exp (- D/RT ). The reason for choosing this particular value of 2 x 10 13 sec. -1 for the frequency factor of these reactions is discussed. The values obtained for the C—Br bond dissociation energies in the investigated bromomethanes are: D (C—Br) D (C—Br) compound (kcal./mole) compound (kcal./mole) CH 3 Br (67.5) CHBr 3 55.5 CH 2 CIBr 61.0 CF 3 Br 64.5 CH 2 Br 2 62.5 CCI 3 Br 49.0 CHCl 2 Br 53.5 CBr 4 49.0 The possible factors responsible for the variation of the C—Br bond dissociation energy in these compounds have been pointed out.


The paper describes a pyrolytic method of investigating the kinetics of gaseous reactions in which toluene is used as a carrier gas. It is shown that the method is particularly suitable for the determination of bond dissociation energies. The scope of the method is illustrated by various examples. A list of bond dissociation energies obtained is given. The manner in which the experimental results obtained can be cross-checked, is indicated and illustrated by examples. The effects of various constitutional factors on the bond dissociation energies are discussed.


Sign in / Sign up

Export Citation Format

Share Document