Three-dimensional disturbances in flow between parallel planes

The close connexion between the stability of three-dimensional and two-dimensional disturbances in flow between parallel walls has been examined and this has led to the formation of a three-dimensional stability diagram where ‘stability surfaces’ replace stability curves. The problem which has been investigated is whether the most highly amplifying disturbance at any given Reynolds number above the minimum critical Reynolds number is a two-dimensional or a three-dimensional disturbance. It has been shown that the most unstable disturbance is a two-dimensional one for a certain definite range of Reynolds number above the critical. For Reynolds numbers greater than this no definite general answer has been found; each basic undisturbed flow must be treated separately and a simple procedure has been given which, in principle, determines the type of disturbance which is most unstable. Difficulty arises in following this procedure because it requires knowledge of the two-dimensional stability curves in a certain region where this knowledge is very scanty at the moment. Althoughth is difficulty arises, in Poiseuille flow the calculations available indicate very strongly that the most unstable disturbance at any given Reynolds number above the critical is two-dimensional. Further, it is believed that this result holds for all other basic flows. A second result is that if the wave number (a) in the flow direction is specified, as well as the Reynolds number, then for a in a certain range, the most unstable disturbance is three-dimensional.


2017 ◽  
Vol 822 ◽  
pp. 813-847 ◽  
Author(s):  
Azan M. Sapardi ◽  
Wisam K. Hussam ◽  
Alban Pothérat ◽  
Gregory J. Sheard

This study seeks to characterise the breakdown of the steady two-dimensional solution in the flow around a 180-degree sharp bend to infinitesimal three-dimensional disturbances using a linear stability analysis. The stability analysis predicts that three-dimensional transition is via a synchronous instability of the steady flows. A highly accurate global linear stability analysis of the flow was conducted with Reynolds number $\mathit{Re}<1150$ and bend opening ratio (ratio of bend width to inlet height) $0.2\leqslant \unicode[STIX]{x1D6FD}\leqslant 5$. This range of $\mathit{Re}$ and $\unicode[STIX]{x1D6FD}$ captures both steady-state two-dimensional flow solutions and the inception of unsteady two-dimensional flow. For $0.2\leqslant \unicode[STIX]{x1D6FD}\leqslant 1$, the two-dimensional base flow transitions from steady to unsteady at higher Reynolds number as $\unicode[STIX]{x1D6FD}$ increases. The stability analysis shows that at the onset of instability, the base flow becomes three-dimensionally unstable in two different modes, namely a spanwise oscillating mode for $\unicode[STIX]{x1D6FD}=0.2$ and a spanwise synchronous mode for $\unicode[STIX]{x1D6FD}\geqslant 0.3$. The critical Reynolds number and the spanwise wavelength of perturbations increase as $\unicode[STIX]{x1D6FD}$ increases. For $1<\unicode[STIX]{x1D6FD}\leqslant 2$ both the critical Reynolds number for onset of unsteadiness and the spanwise wavelength decrease as $\unicode[STIX]{x1D6FD}$ increases. Finally, for $2<\unicode[STIX]{x1D6FD}\leqslant 5$, the critical Reynolds number and spanwise wavelength remain almost constant. The linear stability analysis also shows that the base flow becomes unstable to different three-dimensional modes depending on the opening ratio. The modes are found to be localised near the reattachment point of the first recirculation bubble.



A phenomenon of boundary-layer instability is discussed from the theoretical and experimental points of view. The china-clay evaporation technique shows streaks on the surface, denoting a vortex system generated in the region of flow upstream of transition. Experiments on a swept wing are described briefly, while experiments on the flow due to a rotating disk receive much greater attention. In the latter case, the axes of the disturbance vortices take the form of equi-angular spirals, bounded by radii of instability and of transition. A frequency analysis of the disturbances shows that there is a narrow band of disturbance components of high amplitude, some frequencies within this band corresponding to disturbances fixed relative to the surface and others corresponding to moving waves. Furthermore, the determination of velocity profiles for the rotating-disk flow is described, the agreement with the theoretical solution for laminar flow being quite satisfactory; for turbulent flow, however, the empirical theories are not very satisfactory. In order to explain the vortex phenomenon just discussed, the general equations of motion in orthogonal curvilinear co-ordinates are examined by superimposing an infinitesimal disturbance periodic in space and time on the main flow, and linearizing for small disturbances. An important result is that, within the range of certain approximations, the velocity component in the direction of propagation of the disturbance may be regarded as a two-dimensional flow for stability purposes; then the problem of stability formally resembles the well-known two dimensional problem. However, it is important to emphasize that this result—namely, that the flow curvature has little influence on stability—is applicable only to the possible modes of instability in a local region. The nature of three-dimensional flows is discussed, and the importance of co-ordinates along and normal to the stream-lines outside the boundary layer is examined. In accord with the formal two-dimensional nature of the instability, there is a whole class of velocity distributions, corresponding to different directions, which may exhibit instability. The question of stability at infinite Reynolds number is examined in detail for these profiles. As for ordinary two-dimensional flows, the wave velocity of the disturbance must lie somewhere between the maximum and minimum of the velocity profile considered. The points where the wave velocity equals the fluid velocity are called critical points, of which most of the profiles considered have two. Then Tollmien’s criterion that velocity profiles with a point of inflexion are unstable at infinite Reynolds number is extended to the case of profiles with two critical points. One particular profile—namely, that for which the point of inflexion lies at the point of zero velocity—may generate neutral disturbances of zero phase velocity, corresponding to the disturbances visualized by the china-clay technique. A variational method for the solution of certain of the eigenvalue problems associated with stability at infinite Reynolds number is derived, found by comparison with an exact solution to be very accurate, and applied to the rotating disk. The fixed vortices predicted by the theory have as their axes equi-angular spirals of angle 103°, in good agreement with experiment, but the agreement between theoretical and experimental wave number is not good, the discrepancy being attributed to viscosity. Finally, the correlation between the experimentally observed and theoretically possible disturbances is discussed and certain conclusions drawn therefrom. The streamlines of the disturbed boundary layer show the existence of a double row of vortices, one row of which produces the streaks in the china clay. Application of the theory to other physical phenomena is described.



1958 ◽  
Vol 4 (3) ◽  
pp. 261-275 ◽  
Author(s):  
T. Tatsumi ◽  
T. Kakutani

This paper deals with the stability of a two-dimensional laminar jet against the infinitesimal antisymmetric disturbance. The curve of the neutral stability in the (α, R)-plane (α, the wave-number; R, Reynolds number) is calculated using two different methods for the different parts of the curve; the solution is developed in powers of (αR)−1 for obtaining the upper branch of the curve and in powers of αR for the lower branch.The asymptotic behaviour of these branches is that for branch I,$\alpha \rightarrow 2, \;\; c \rightarrow \frac{2}{3}$ for $R \rightarrow \infty$; and for branch II, $R \sim 1\cdot12\alpha^{-1|2},\; c \sim 1\cdot 20 \alpha^2$ for α → 0. Some discussion is given on the validity of the basic assumption of the stability theory in relation to the numerical result obtained here.



Author(s):  
D. H. Michael

The ordinary theory of stability of plane parallel flows is considerably simplified by a result due to Squire (2) which says that if a velocity profile becomes unstable to a small three-dimensional disturbance at a given Reynolds number, then it will become unstable to a small two-dimensional disturbance at a lower Reynolds number. This result enables us to restrict investigation of the stability to the cases of two-dimensional disturbances.



2007 ◽  
Vol 582 ◽  
pp. 319-340 ◽  
Author(s):  
M. D. GRIFFITH ◽  
M. C. THOMPSON ◽  
T. LEWEKE ◽  
K. HOURIGAN ◽  
W. P. ANDERSON

The two-dimensional flow through a constricted channel is studied. A semi-circular bump is located on one side of the channel and the extent of blockage is varied by adjusting the radius of the bump. The blockage is varied between 0.05 and 0.9 of the channel width and the upstream Reynolds number between 25 and 3000. The geometry presents a simplified blockage specified by a single parameter, serving as a starting point for investigations of other more complex blockage geometries. For blockage ratios in excess of 0.4, the variation of reattachment length with Reynolds number collapses to within approximately 15%, while at lower ratios the behaviour differs. For the constrained two-dimensional flow, various phenomena are identified, such as multiple mini-recirculations contained within the main recirculation bubble and vortex shedding at higher Reynolds numbers. The stability of the flow to three-dimensional perturbations is analysed, revealing a transition to a three-dimensional state at a critical Reynolds number which decreases with higher blockage ratios. Separation lengths and the onset and structure of three-dimensional instability observed from the geometry of blockage ratio 0.5 resemble results taken from backward-facing step investigations. The question of the underlying mechanism behind the instability being either centrifugal or elliptic in nature and operating within the initial recirculation zone is analytically tested.



1971 ◽  
Vol 49 (1) ◽  
pp. 21-31 ◽  
Author(s):  
Kanefusa Gotoh

The effect of a uniform and parallel magnetic field upon the stability of a free shear layer of an electrically conducting fluid is investigated. The equations of the velocity and the magnetic disturbances are solved numerically and it is shown that the flow is stabilized with increasing magnetic field. When the magnetic field is expressed in terms of the parameter N (= M2/R2), where M is the Hartmann number and R is the Reynolds number, the lowest critical Reynolds number is caused by the two-dimensional disturbances. So long as 0 [les ] N [les ] 0·0092 the flow is unstable at all R. For 0·0092 < N [les ] 0·0233 the flow is unstable at 0 < R < Ruc where Ruc decreases as N increases. For 0·0233 < N < 0·0295 the flow is unstable at Rlc < R < Ruc where Rlc increases with N. Lastly for N > 0·0295 the flow is stable at all R. When the magnetic field is measured by M, the lowest critical Reynolds number is still due to the two-dimensional disturbances provided 0 [les ] M [les ] 0·52, and Rc is given by the corresponding Rlc. For M > 0·52, Rc is expressed as Rc = 5·8M, and the responsible disturbance is the three-dimensional one which propagates at angle cos−1(0·52/M) to the direction of the basic flow.



1978 ◽  
Vol 84 (3) ◽  
pp. 517-527 ◽  
Author(s):  
S. D. R. Wilson ◽  
I. Gladwell

Experiments have shown that the two-dimensional flow near a forward stagnation line may be unstable to three-dimensional disturbances. The growing disturbance takes the form of secondary vortices, i.e. vortices more or less parallel to the original streamlines. The instability is usually confined to the boundary layer and the spacing of the secondary vortices is of the order of the boundary-layer thickness. This situation is analysed theoretically for the case of infinitesimal disturbances of the type first studied by Görtler and Hämmerlin. These are disturbances periodic in the direction perpendicular to the plane of the flow, in the limit of infinite Reynolds number. It is shown that the flow is always stable to these disturbances.



1991 ◽  
Vol 231 ◽  
pp. 35-50 ◽  
Author(s):  
C. E. Grosch ◽  
T. L. Jackson

We present the results of a study of the inviscid spatial stability of a parallel three-dimensional compressible mixing layer. The parameters of this study are the Mach number of the fast stream, the ratio of the speed of the slow stream to that of the fast stream, the ratio of the temperature of the slow stream to that of the fast stream, the direction of the crossflow in the fast stream, the frequency, and the direction of propagation of the disturbance wave. Stability characteristics of the flow as a function of these parameters are given. Certain theoretical results are presented which show the interrelations between these parameters and their effects on the stability characteristics. In particular, the three-dimensional stability problem for a three-dimensional mixing layer at Mach zero can be transformed to a two-dimensional stability problem for an equivalent two-dimensional mean flow. There exists a one-parameter family of curves such that for any given direction of mean flow and of wave propagation one can apply this transformation and obtain the growth rate from the universal curves. For supersonic couvective Mach numbers, certain combinations of crossflow angle and propagation angle of the disturbance can increase the growth rates by a factor of about two. and thus enhance mixing.



We have previously discussed qualitative models for bursting and thalamic neurons that were obtained by modifying a simple two-dimensional model for repetitive firing. In this paper we report the results of making a similar sequence of modifications to a more elaborate six-dimensional model of repetitive firing which is based on the Hodgkin–Huxley equations. To do this we first reduce the six-dimensional model to a two-dimensional model that resembles our original two-dimensional qualitative model. This is achieved by defining a new variable, which we call q . We then add a subthreshold inward current and a subthreshold outward current having a variable, z , that changes slowly. This gives a three-dimensional ( v, q, z ) model of the Hodgkin–Huxley type, which we refer to as the z -model. Depending on the choice of parameter values this model resembles our previous models of bursting and thalamic neurons. At each stage in the development of these models we return to the corresponding seven-dimensional model to confirm that we can obtain similar solutions by using the complete system of equations. The analysis of the three-dimensional model involves a state diagram and a stability diagram. The state diagram shows the projection of the phase path from v, q, z space into the v, z plane, together with the projections of the curves ż = 0 and v̇ = q̇ = 0. The stability of the points on the curve v̇ = q̇ = 0, which we call the v, q nullcurve, is determined by the stability diagram. Taken together the state and stability diagrams show how to assemble the ionic currents to produce a given firing pattern.



1968 ◽  
Vol 33 (3) ◽  
pp. 433-443 ◽  
Author(s):  
Sung-Hwan Ko

A study is made of the stability of a viscous, incompressible fluid with a finite conductivity flowing between parallel planes in a parallel magnetic field. The general form of the magnetohydrodynamic stability equation is a sixth-order differential equation. The complete sixth-order differential equation is solved numerically as an eigenvalue problem. Stability curves are obtained for a range of values of the magnetic Reynolds number Rm and the Alfvé n number A based on two-dimensional disturbances. It is found that the minimum critical Reynolds number is raised as Rm increases for a given A2 and as A2 increases for a given Rm, respectively. The stability curve closes and finally degenerates to a point which gives the critical value for Rm or A2. Results obtained for two-dimensional disturbances are modified to take into account three-dimensional disturbances. Then the minimum critical Reynolds number where three-dimensional disturbances become apparent is obtained, below which two-dimensional disturbances are the most unstable.



Sign in / Sign up

Export Citation Format

Share Document