Stability of plane parallel flows of electrically conducting fluids

Author(s):  
D. H. Michael

The ordinary theory of stability of plane parallel flows is considerably simplified by a result due to Squire (2) which says that if a velocity profile becomes unstable to a small three-dimensional disturbance at a given Reynolds number, then it will become unstable to a small two-dimensional disturbance at a lower Reynolds number. This result enables us to restrict investigation of the stability to the cases of two-dimensional disturbances.

1971 ◽  
Vol 49 (1) ◽  
pp. 21-31 ◽  
Author(s):  
Kanefusa Gotoh

The effect of a uniform and parallel magnetic field upon the stability of a free shear layer of an electrically conducting fluid is investigated. The equations of the velocity and the magnetic disturbances are solved numerically and it is shown that the flow is stabilized with increasing magnetic field. When the magnetic field is expressed in terms of the parameter N (= M2/R2), where M is the Hartmann number and R is the Reynolds number, the lowest critical Reynolds number is caused by the two-dimensional disturbances. So long as 0 [les ] N [les ] 0·0092 the flow is unstable at all R. For 0·0092 < N [les ] 0·0233 the flow is unstable at 0 < R < Ruc where Ruc decreases as N increases. For 0·0233 < N < 0·0295 the flow is unstable at Rlc < R < Ruc where Rlc increases with N. Lastly for N > 0·0295 the flow is stable at all R. When the magnetic field is measured by M, the lowest critical Reynolds number is still due to the two-dimensional disturbances provided 0 [les ] M [les ] 0·52, and Rc is given by the corresponding Rlc. For M > 0·52, Rc is expressed as Rc = 5·8M, and the responsible disturbance is the three-dimensional one which propagates at angle cos−1(0·52/M) to the direction of the basic flow.


2017 ◽  
Vol 822 ◽  
pp. 813-847 ◽  
Author(s):  
Azan M. Sapardi ◽  
Wisam K. Hussam ◽  
Alban Pothérat ◽  
Gregory J. Sheard

This study seeks to characterise the breakdown of the steady two-dimensional solution in the flow around a 180-degree sharp bend to infinitesimal three-dimensional disturbances using a linear stability analysis. The stability analysis predicts that three-dimensional transition is via a synchronous instability of the steady flows. A highly accurate global linear stability analysis of the flow was conducted with Reynolds number $\mathit{Re}<1150$ and bend opening ratio (ratio of bend width to inlet height) $0.2\leqslant \unicode[STIX]{x1D6FD}\leqslant 5$. This range of $\mathit{Re}$ and $\unicode[STIX]{x1D6FD}$ captures both steady-state two-dimensional flow solutions and the inception of unsteady two-dimensional flow. For $0.2\leqslant \unicode[STIX]{x1D6FD}\leqslant 1$, the two-dimensional base flow transitions from steady to unsteady at higher Reynolds number as $\unicode[STIX]{x1D6FD}$ increases. The stability analysis shows that at the onset of instability, the base flow becomes three-dimensionally unstable in two different modes, namely a spanwise oscillating mode for $\unicode[STIX]{x1D6FD}=0.2$ and a spanwise synchronous mode for $\unicode[STIX]{x1D6FD}\geqslant 0.3$. The critical Reynolds number and the spanwise wavelength of perturbations increase as $\unicode[STIX]{x1D6FD}$ increases. For $1<\unicode[STIX]{x1D6FD}\leqslant 2$ both the critical Reynolds number for onset of unsteadiness and the spanwise wavelength decrease as $\unicode[STIX]{x1D6FD}$ increases. Finally, for $2<\unicode[STIX]{x1D6FD}\leqslant 5$, the critical Reynolds number and spanwise wavelength remain almost constant. The linear stability analysis also shows that the base flow becomes unstable to different three-dimensional modes depending on the opening ratio. The modes are found to be localised near the reattachment point of the first recirculation bubble.


1968 ◽  
Vol 32 (4) ◽  
pp. 801-808 ◽  
Author(s):  
M. Gaster ◽  
A. Davey

In this paper we examine the stability of a two-dimensional wake profile of the form u(y) = U∞(1 – r e-sy2) with respect to a pulsed disturbance at a point in the fluid. The disturbed flow forms an expanding wave packet which is convected downstream. Far downstream, where asymptotic expansions are valid, the motion at any point in the wave packet is described by a particular three-dimensional wave having complex wave-numbers. In the special case of very unstable flows, where viscosity does not have a significant influence, it is possible to evaluate the three-dimensional eigenvalues in terms of two-dimensional ones using the inviscid form of Squire's transformation. In this way each point in the physical plane can be linked to a particular two-dimensional wave growing in both space and time by simple algebraic expressions which are independent of the mean flow velocity profile. Computed eigenvalues for the wake profile are used in these relations to find the behaviour of the wave packet in the physical plane.


1981 ◽  
Vol 48 (1) ◽  
pp. 192-194 ◽  
Author(s):  
S. C. Gupta ◽  
V. K. Garg

It is found that even a 5 percent change in the velocity profile produces a 100 percent change in the critical Reynolds number for the stability of developing flow very close to the entrance of a two-dimensional channel.


The first part of the paper is a physical discussion of the way in which a magnetic field affects the stability of a fluid in motion. Particular emphasis is given to how the magnetic field affects the interaction of the disturbance with the mean motion. The second part is an analysis of the stability of plane parallel flows of fluids with finite viscosity and conductivity under the action of uniform parallel magnetic fields. We show that, in general, three-dimensional disturbances are the most unstable, thus disagreeing with the conclusion of Michael (1953) and Stuart (1954). We show how results obtained for two-dimensional disturbances can be used to calculate the most unstable three-dimensional disturbances and thence we prove that a parallel magnetic field can never completely stabilize a parallel flow.


2007 ◽  
Vol 582 ◽  
pp. 319-340 ◽  
Author(s):  
M. D. GRIFFITH ◽  
M. C. THOMPSON ◽  
T. LEWEKE ◽  
K. HOURIGAN ◽  
W. P. ANDERSON

The two-dimensional flow through a constricted channel is studied. A semi-circular bump is located on one side of the channel and the extent of blockage is varied by adjusting the radius of the bump. The blockage is varied between 0.05 and 0.9 of the channel width and the upstream Reynolds number between 25 and 3000. The geometry presents a simplified blockage specified by a single parameter, serving as a starting point for investigations of other more complex blockage geometries. For blockage ratios in excess of 0.4, the variation of reattachment length with Reynolds number collapses to within approximately 15%, while at lower ratios the behaviour differs. For the constrained two-dimensional flow, various phenomena are identified, such as multiple mini-recirculations contained within the main recirculation bubble and vortex shedding at higher Reynolds numbers. The stability of the flow to three-dimensional perturbations is analysed, revealing a transition to a three-dimensional state at a critical Reynolds number which decreases with higher blockage ratios. Separation lengths and the onset and structure of three-dimensional instability observed from the geometry of blockage ratio 0.5 resemble results taken from backward-facing step investigations. The question of the underlying mechanism behind the instability being either centrifugal or elliptic in nature and operating within the initial recirculation zone is analytically tested.


1978 ◽  
Vol 84 (3) ◽  
pp. 517-527 ◽  
Author(s):  
S. D. R. Wilson ◽  
I. Gladwell

Experiments have shown that the two-dimensional flow near a forward stagnation line may be unstable to three-dimensional disturbances. The growing disturbance takes the form of secondary vortices, i.e. vortices more or less parallel to the original streamlines. The instability is usually confined to the boundary layer and the spacing of the secondary vortices is of the order of the boundary-layer thickness. This situation is analysed theoretically for the case of infinitesimal disturbances of the type first studied by Görtler and Hämmerlin. These are disturbances periodic in the direction perpendicular to the plane of the flow, in the limit of infinite Reynolds number. It is shown that the flow is always stable to these disturbances.


2018 ◽  
Vol 861 ◽  
pp. 382-406 ◽  
Author(s):  
Oliver G. W. Cassells ◽  
Tony Vo ◽  
Alban Pothérat ◽  
Gregory J. Sheard

This study seeks to elucidate the linear transient growth mechanisms in a uniform duct with square cross-section applicable to flows of electrically conducting fluids under the influence of an external magnetic field. A particular focus is given to the question of whether at high magnetic fields purely two-dimensional mechanisms exist, and whether these can be described by a computationally inexpensive quasi-two-dimensional model. Two Reynolds numbers of $5000$ and $15\,000$ and an extensive range of Hartmann numbers $0\leqslant \mathit{Ha}\leqslant 800$ were investigated. Three broad regimes are identified in which optimal mode topology and non-modal growth mechanisms are distinct. These regimes, corresponding to low, moderate and high magnetic field strengths, are found to be governed by the independent parameters; Hartmann number, Reynolds number based on the Hartmann layer thickness $R_{H}$ and Reynolds number built upon the Shercliff layer thickness $R_{S}$, respectively. Transition between regimes respectively occurs at $\mathit{Ha}\approx 2$ and no lower than $R_{H}\approx 33.\dot{3}$. Notably for the high Hartmann number regime, quasi-two-dimensional magnetohydrodynamic models are shown to be excellent predictors of not only transient growth magnitudes, but also the fundamental growth mechanisms of linear disturbances. This paves the way for a precise analysis of transition to quasi-two-dimensional turbulence at much higher Hartmann numbers than is currently achievable.


1968 ◽  
Vol 33 (3) ◽  
pp. 433-443 ◽  
Author(s):  
Sung-Hwan Ko

A study is made of the stability of a viscous, incompressible fluid with a finite conductivity flowing between parallel planes in a parallel magnetic field. The general form of the magnetohydrodynamic stability equation is a sixth-order differential equation. The complete sixth-order differential equation is solved numerically as an eigenvalue problem. Stability curves are obtained for a range of values of the magnetic Reynolds number Rm and the Alfvé n number A based on two-dimensional disturbances. It is found that the minimum critical Reynolds number is raised as Rm increases for a given A2 and as A2 increases for a given Rm, respectively. The stability curve closes and finally degenerates to a point which gives the critical value for Rm or A2. Results obtained for two-dimensional disturbances are modified to take into account three-dimensional disturbances. Then the minimum critical Reynolds number where three-dimensional disturbances become apparent is obtained, below which two-dimensional disturbances are the most unstable.


Sign in / Sign up

Export Citation Format

Share Document