The award of medals by the President, Sir Andrew Huxley, O.M., at the Anniversary Meeting, 30 November 1985

The Copley Medal is awarded to Dr A. Klug, F. R. S., in recognition of his outstanding contributions to our understanding of complex biological structures and the methods used for determining them. Together with D. Kaspar, Klug developed a theory that predicted the arrangement of sub-units in the protein shells of spherical viruses. This theory brought order and understanding into a confused field ; nearly all the observed structures of small spherical viruses, many of them elucidated by Klug and his collaborators, are consistent with it. After more than 20 years’ work on tobacco mosaic virus Klug and his colleagues solved the structure of its coat protein in atomic detail. They also elucidated the mechanisms by which the helical virus particle assembles itself from its RNA and its 2130 protein sub-units. Recently his group succeeded in crystallizing chromatin, and solved its structure at a resolution sufficient to see the double-helical DNA coiled around the spool of histone. Many of Klug’s successes were made possible by his introduction of Fourier image reconstruction methods into electron microscopy. Klug’s work is characterized by deep insight into the physics of diffraction and image formation and the intricate geometry of living matter.

1986 ◽  
Vol 227 (1249) ◽  
pp. 395-398

The Copley Medal is awarded to Dr A. Klug, F. R. S., in recognition of his outstanding contributions to our understanding of complex biological structures and the methods used for determining them. Together with D. Kaspar, Klug developed a theory that predicted the arrangement of sub-units in the protein shells of spherical viruses. This theory brought order and understanding into a confused field; nearly all the observed structures of small spherical viruses, many of them elucidated by Klug and his collaborators, are consistent with it. After more than 20 years’ work on tobacco mosaic virus Klug and his colleagues solved the structure of its coat protein in atomic detail. They also elucidated the mechanisms by which the helical virus particle assembles itself from its RNA and its 2130 protein sub-units. Recently his group succeeded in crystallizing chromatin, and solved its structure at a resolution sufficient to see the double-helical DNA coiled around the spool of histone. Many of Klug’s successes were made possible by his introduction of Fourier image reconstruction methods into electron microscopy. Klug’s work is characterized by deep insight into the physics of diffraction and image formation and the intricate geometry of living matter.


FEBS Letters ◽  
1998 ◽  
Vol 433 (3) ◽  
pp. 307-311 ◽  
Author(s):  
V.N. Orlov ◽  
S.V. Kust ◽  
P.V. Kalmykov ◽  
V.P. Krivosheev ◽  
E.N. Dobrov ◽  
...  

Biochemistry ◽  
1990 ◽  
Vol 29 (21) ◽  
pp. 5119-5126 ◽  
Author(s):  
Steven J. Shire ◽  
Patrick McKay ◽  
David W. Leung ◽  
George J. Cachianes ◽  
Eugene Jackson ◽  
...  

2003 ◽  
Vol 77 (6) ◽  
pp. 3549-3556 ◽  
Author(s):  
Sameer P. Goregaoker ◽  
James N. Culver

ABSTRACT A protein-protein interaction within the helicase domain of the Tobacco mosaic virus (TMV) 126- and 183-kDa replicase proteins was previously implicated in virus replication (S. Goregaoker, D. Lewandowski, and J. Culver, Virology 282:320-328, 2001). To further characterize the interaction, polypeptides covering the interacting portions of the TMV helicase domain were expressed and purified. Biochemical characterizations demonstrated that the helicase domain polypeptides hydrolyzed ATP and bound both single-stranded and duplexed RNA in an ATP-controlled fashion. A TMV helicase polypeptide also was capable of unwinding duplexed RNA, confirming the predicted helicase function of the domain. Biochemically active helicase polypeptides were shown by gel filtration to form high-molecular-weight complexes. Electron microscopy studies revealed the presence of ring-like oligomers that displayed six-sided symmetry. Taken together, these data demonstrate that the TMV helicase domain interacts with itself to produce hexamer-like oligomers. Within the context of the full-length 126- and 183-kDa proteins, these findings suggest that the TMV replicase may form a similar oligomer.


2000 ◽  
Vol 56 (2) ◽  
pp. 71-77 ◽  
Author(s):  
VICTOR K. NOVIKOV ◽  
EKATERINA V. BELENOVICH ◽  
EVGENY N. DOBROV ◽  
SERGEI K. ZAVRIEV

Sign in / Sign up

Export Citation Format

Share Document