Plastic relaxation at a crack tip by asymmetric slip

Relaxation at a sharp crack tip by a single slip band is considered. It is shown that for mixed-mode loading of a plane crack in an isotropic medium there is a unique angle between the slip band and the crack for which the energy release rate (or stress intensity factor) of the crack can be reduced to zero. For such a slip-band calculations are made of the slipband length and the crack-opening displacement as a function of the loading, crack length and friction stress acting on dislocations in the slip band. For small-scale yielding, a simple model is discussed that gives a good approximation to the crack-tip opening displacement and slip-band angle.

2010 ◽  
Vol 36 ◽  
pp. 157-161 ◽  
Author(s):  
Tin Gyi Zhang ◽  
Yuan Bao Leng ◽  
Dan Ying Gao

Based on the principle of electrical measurement method, the clip gauge was made to measure the crack opening displacement (COD).Through the three-point bending test on the specimens of steel fiber reinforced high strength concrete (SFHSC), the effect of the fiber volume fraction (ρf) upon the critical crack opening displacement (the critical crack tip opening displacement and the critical crack mouth opening displacement) was studied. The result shows that the effect of ρf on mouth-tip ratio (the ratio of critical crack mouth opening displacement to critical crack tip opening displacement) can reflect its effect upon the critical crack opening displacement. According to the geometrical relationship between the initial crack length and the critical crack opening displacement,calculation method for the initial crack length was proposed. Based on the test result, the formula was established for calculating the critical crack tip opening displacement.


2006 ◽  
Vol 324-325 ◽  
pp. 295-298 ◽  
Author(s):  
Hyeon Chang Choi

An elastic-plastic finite element analysis (FEA) is performed to examine the opening behavior of fatigue crack, where the contact elements are used in the mesh of the crack tip area. The relationship between fatigue crack opening behavior and cyclic crack tip opening displacement was studied in the previous study. In this paper, we investigate the effect of the element size when predict fatigue crack opening behavior using the cyclic crack tip opening displacement obtained from FEA. The cyclic crack tip opening displacement is well related to fatigue crack opening behavior.


Author(s):  
E. Smith

The relative displacement of the crack faces and the tensile stress ahead of a Mode I elastic crack tip can be expressed, in the immediate vicinity of the tip, by two-term power series expansions, the two terms being associated with the stress intensity factor KI and a dimensionless parameter g0. These parameters feature prominently in cohesive process zone models of a crack tip with regard to the crack tip opening displacement vT, process zone size s, the crack opening area A and the effective opening area AD of the process zone. This paper shows that KI and g0 depend upon each other via a relation which is dependent upon the geometrical configuration but is independent of the configuration’s loading pattern.


Author(s):  
E. Smith

An earlier paper (Part I) has shown how key parameters associated with the uniform stress process zone model of a crack: crack tip opening displacement, process zone size, crack opening area and the effective opening area of the process zone, depend upon parameters that are associated with the relevant terms in the expansion of the expression, for the purely elastic situation, for the relative displacement of the crack faces or the stress ahead of an elastic crack. The earlier paper focussed upon the case where the non-linear (with regards to applied stress) contributions to the crack-process zone parameters were determined to the first two terms in increasing powers of the applied loading stress parameter. These terms depend upon the first two terms in the expressions for the crack face relative displacement on the stress ahead of the crack in the elastic situation. The first of these terms is related to the stress intensity factor. In this paper we show how the parameter g0, which defines the second term, can be determined for some idealised situations.


Author(s):  
Toshiyuki Meshii ◽  
Teruhiro Yamaguchi ◽  
Koki Fukinbara

In this paper, we demonstrate that a deterministic approach requiring only tensile test data for different temperatures has a possibility to predict the minimum fracture toughness for these temperatures. The material is assumed to be in the Ductile-to-Brittle-Transition Temperature (DBTT) region. The approach was based on one of the authors’ finding that the critical stress σ22c of the modified Ritchie-Knott-Rice criterion is correlated with the minimum fracture toughness and shows very small scatter and is specimen configuration independent. The criterion predicts onset of cleavage fracture of a material in the DBTT transition temperature region, when the crack-opening stress σ22 measured at a distance from the crack-tip equal to four times the crack-tip opening displacement δt exceeds a critical value σ22c. The proposed approach is expected to overcome some inconveniences which recent studies have reported to the Master Curve parameters vary with size and temperature.


2012 ◽  
Vol 188 ◽  
pp. 11-16
Author(s):  
Yao Yao ◽  
Li Xun Cai ◽  
Chen Bao ◽  
Han Jiang

For front-force compact tension specimen (FFCT), based on the refined results of the relationship between crack tip opening displacement and load line crack opening displacement from Finite Element Analysis (FEA), the influences of material properties and plastic deformation near the crack tip have been analyzed. A simplified and accurate transform formula for FFCT specimens is presented in this paper, and the error analysis is conducted.


Sign in / Sign up

Export Citation Format

Share Document