Stability and eigenvalue bounds of the flow of a dipolar fluid between two parallel plates

Author(s):  
Pratap Puri

In this article, we derive the Orr–Sommerfeld equation for the stability of parallel flows of a dipolar fluid. The classical results found by Squire, for viscous Newtonian fluids, are generalized to the case of dipolar fluids. A sufficient condition for stability is obtained for dipolar fluids and eigenvalue bounds for the Orr–Sommerfeld equation are found.

2019 ◽  
Vol 14 (1) ◽  
pp. 52-58 ◽  
Author(s):  
A.D. Nizamova ◽  
V.N. Kireev ◽  
S.F. Urmancheev

The flow of a viscous model fluid in a flat channel with a non-uniform temperature field is considered. The problem of the stability of a thermoviscous fluid is solved on the basis of the derived generalized Orr-Sommerfeld equation by the spectral decomposition method in Chebyshev polynomials. The effect of taking into account the linear and exponential dependences of the fluid viscosity on temperature on the spectral characteristics of the hydrodynamic stability equation for an incompressible fluid in a flat channel with given different wall temperatures is investigated. Analytically obtained profiles of the flow rate of a thermovisible fluid. The spectral pictures of the eigenvalues of the generalized Orr-Sommerfeld equation are constructed. It is shown that the structure of the spectra largely depends on the properties of the liquid, which are determined by the viscosity functional dependence index. It has been established that for small values of the thermoviscosity parameter the spectrum compares the spectrum for isothermal fluid flow, however, as it increases, the number of eigenvalues and their density increase, that is, there are more points at which the problem has a nontrivial solution. The stability of the flow of a thermoviscous fluid depends on the presence of an eigenvalue with a positive imaginary part among the entire set of eigenvalues found with fixed Reynolds number and wavenumber parameters. It is shown that with a fixed Reynolds number and a wave number with an increase in the thermoviscosity parameter, the flow becomes unstable. The spectral characteristics determine the structure of the eigenfunctions and the critical parameters of the flow of a thermally viscous fluid. The eigenfunctions constructed in the subsequent works show the behavior of transverse-velocity perturbations, their possible growth or decay over time.


1989 ◽  
Vol 12 (4) ◽  
pp. 571-585
Author(s):  
E. Fachini ◽  
A. Maggiolo Schettini ◽  
G. Resta ◽  
D. Sangiorgi

We prove that the classes of languages accepted by systolic automata over t-ary trees (t-STA) are always either equal or incomparable if one varies t. We introduce systolic tree automata with base (T(b)-STA), a subclass of STA with interesting properties of modularity, and we give a necessary and sufficient condition for the equivalence between a T(b)-STA and a t-STA, for a given base b. Finally, we show that the stability problem for T(b)-ST A is decidible.


Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 334
Author(s):  
Constantin Fetecau ◽  
Dumitru Vieru ◽  
Tehseen Abbas ◽  
Rahmat Ellahi

Some unsteady motions of incompressible upper-convected Maxwell (UCM) fluids with exponential dependence of viscosity on the pressure are analytically studied. The fluid motion between two infinite horizontal parallel plates is generated by the lower plate, which applies time-dependent shear stresses to the fluid. Exact expressions, in terms of standard Bessel functions, are established both for the dimensionless velocity fields and the corresponding non-trivial shear stresses using the Laplace transform technique and suitable changes of the unknown function and the spatial variable in the transform domain. They represent the first exact solutions for unsteady motions of non-Newtonian fluids with pressure-dependent viscosity. The similar solutions corresponding to the flow of the same fluids due to an exponential shear stress on the boundary as well as the solutions of ordinary UCM fluids performing the same motions are obtained as limiting cases of present results. Furthermore, known solutions for unsteady motions of the incompressible Newtonian fluids with/without pressure-dependent viscosity induced by oscillatory or constant shear stresses on the boundary are also obtained as limiting cases. Finally, the influence of physical parameters on the fluid motion is graphically illustrated and discussed. It is found that fluids with pressure-dependent viscosity flow are slower when compared to ordinary fluids.


2003 ◽  
Vol 10 (5) ◽  
pp. 1521-1522
Author(s):  
V. I. Badin

1996 ◽  
Vol 312 ◽  
pp. 173-200 ◽  
Author(s):  
Yuan C. Severtson ◽  
Cyrus K. Aidun

To understand the physics of air entrainment in thin-film liquid coating and other applications, the stability characteristics of general stratified two-layer Poiseuille-Couette flow are examined in inclined channels. Only one mode of instability, the interfacial mode, is obtained in the long-wave asymptotic limit. The generalized eigenvalue problem, formed by spectral decomposition and solution of the general two-layer Orr-Sommerfeld equation, is solved to obtain all of the critical modes. Analysis of the air/liquid interface corresponding to experiments reveals that because of the large density variation between the two layers, the interfacial mode is the only mode of instability in air entrainment. Results from the stability analysis of the flow near the contact line where air entrainment occurs are consistent with previous experimental observations.


Author(s):  
Ebrahim Esmailzadeh ◽  
Gholamreza Nakhaie-Jazar ◽  
Bahman Mehri

Abstract The transverse vibrating motion of a simple beam with one end fixed while driven harmonically along its axial direction from the other end is investigated. For a special case of zero value for the rigidity of the beam, the system reduces to that of a vibrating string with the corresponding equation of its motion. The sufficient condition for the periodic solution of the beam is then derived by means of the Green’s function and Schauder’s fixed point theorem. The criteria for the stability of the system is well defined and the condition for which the performance of the beam behaves as a nonlinear function is stated.


Sign in / Sign up

Export Citation Format

Share Document