Dynamics of a stochastically perturbed two-body problem

Author(s):  
Shambhu N Sharma ◽  
H Parthasarathy

In classical mechanics, the two-body problem has been well studied. The governing equations form a system of two-coupled second-order nonlinear differential equations for the radial and angular coordinates. The perturbation induced by the astronomical disturbance like ‘dust’ is normally not considered in the orbit dynamics. Distributed dust produces an additional random force on the orbiting particle, which can be modelled as a random force having ‘Gaussian statistics’. The estimation of accurate positioning of the orbiting particle is not possible without accounting for the stochastic perturbation felt by the orbiting particle. The objective of this paper is to use the stochastic differential equation (SDE) formalism to study the effect of such disturbances on the orbiting body. Specifically, in this paper, we linearize SDEs about the mean of the state vector. The linearization operation performed above, transforms the system of SDEs into another system of SDEs that resembles a bilinear system, as described in signal processing and control literature. However, the mean trajectory of the resulting bilinear stochastic differential model does not preserve the perturbation effect felt by the orbiting particle; only the variance trajectory includes the perturbation effect. For this reason, the effectiveness of the dust-perturbed model is examined on the basis of the bilinear and second-order approximations of the system nonlinearity . The bilinear and second-order approximations of the system nonlinearity allow substantial simplifications for the numerical implementation and preserve some of the properties of the original stochastically perturbed model. Most notably, this paper reveals that the Brownian motion process is accurate to model and study the effect of dust perturbation on the orbiting particle. In addition, analytical findings are supported with finite difference method-based numerical simulations.

Mathematics ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 487 ◽  
Author(s):  
Mario Versaci ◽  
Giovanni Angiulli ◽  
Alessandra Jannelli

In this paper, a stable numerical approach for recovering the membrane profile of a 2D Micro-Electric-Mechanical-Systems (MEMS) is presented. Starting from a well-known 2D nonlinear second-order differential model for electrostatic circular membrane MEMS, where the amplitude of the electrostatic field is considered proportional to the mean curvature of the membrane, a collocation procedure, based on the three-stage Lobatto formula, is derived. The convergence is studied, thus obtaining the parameters operative ranges determining the areas of applicability of the device under analysis.


Mathematics ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 1193 ◽  
Author(s):  
Paolo Di Barba ◽  
Luisa Fattorusso ◽  
Mario Versaci

In the framework of 2D circular membrane Micro-Electric-Mechanical-Systems (MEMS), a new non-linear second-order differential model with singularity in the steady-state case is presented in this paper. In particular, starting from the fact that the electric field magnitude is locally proportional to the curvature of the membrane, the problem is formalized in terms of the mean curvature. Then, a result of the existence of at least one solution is achieved. Finally, two different approaches prove that the uniqueness of the solutions is not ensured.


Author(s):  
jose antonio lópez ortí ◽  
Vicemte Agost Gómez ◽  
Miguel Barreda rochera

In the present work, we define a new anomaly, $\Psi$, termed semifocal anomaly. It is determined by the mean between the true anomaly, $f$, and the antifocal anomaly, $f^{\prime}$; Fukushima defined $f^{\prime}$ as the angle between the periapsis and the secondary around the empty focus. In this first part of the paper, we take an approach to the study of the semifocal anomaly in the hyperbolic motion and in the limit case correspoding to the parabolic movement. From here we find a relation beetween the semifocal anomaly and the true anomaly that holds independently of the movement type. We focus on the study of the two-body problem when this new anomaly is used as the temporal variable.\\ In the second part, we show the use of this anomaly —combined with numerical integration methods— to improve integration errors in one revolution. Finally, we analyze the errors committed in the integration process —depending on several values of the eccentricity— for the elliptic, parabolic and hyperbolic cases in the apsidal region.


Author(s):  
Nathalie Deruelle ◽  
Jean-Philippe Uzan

This chapter embarks on a study of the two-body problem in general relativity. In other words, it seeks to describe the motion of two compact, self-gravitating bodies which are far-separated and moving slowly. It limits the discussion to corrections proportional to v2 ~ m/R, the so-called post-Newtonian or 1PN corrections to Newton’s universal law of attraction. The chapter first examines the gravitational field, that is, the metric, created by the two bodies. It then derives the equations of motion, and finally the actual motion, that is, the post-Keplerian trajectories, which generalize the post-Keplerian geodesics obtained earlier in the chapter.


Author(s):  
Nathalie Deruelle ◽  
Jean-Philippe Uzan

This chapter presents the basics of the ‘effective-one-body’ approach to the two-body problem in general relativity. It also shows that the 2PN equations of motion can be mapped. This can be done by means of an appropriate canonical transformation, to a geodesic motion in a static, spherically symmetric spacetime, thus considerably simplifying the dynamics. Then, including the 2.5PN radiation reaction force in the (resummed) equations of motion, this chapter provides the waveform during the inspiral, merger, and ringdown phases of the coalescence of two non-spinning black holes into a final Kerr black hole. The chapter also comments on the current developments of this approach, which is instrumental in building the libraries of waveform templates that are needed to analyze the data collected by the current gravitational wave detectors.


2011 ◽  
Vol 18 (01) ◽  
pp. 71-85
Author(s):  
Fabrizio Cacciafesta

We provide a simple way to visualize the variance and the mean absolute error of a random variable with finite mean. Some application to options theory and to second order stochastic dominance is given: we show, among other, that the "call-put parity" may be seen as a Taylor formula.


Sign in / Sign up

Export Citation Format

Share Document