scholarly journals Recovering of the Membrane Profile of an Electrostatic Circular MEMS by a Three-Stage Lobatto Procedure: A Convergence Analysis in the Absence of Ghost Solutions

Mathematics ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 487 ◽  
Author(s):  
Mario Versaci ◽  
Giovanni Angiulli ◽  
Alessandra Jannelli

In this paper, a stable numerical approach for recovering the membrane profile of a 2D Micro-Electric-Mechanical-Systems (MEMS) is presented. Starting from a well-known 2D nonlinear second-order differential model for electrostatic circular membrane MEMS, where the amplitude of the electrostatic field is considered proportional to the mean curvature of the membrane, a collocation procedure, based on the three-stage Lobatto formula, is derived. The convergence is studied, thus obtaining the parameters operative ranges determining the areas of applicability of the device under analysis.

Mathematics ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 1193 ◽  
Author(s):  
Paolo Di Barba ◽  
Luisa Fattorusso ◽  
Mario Versaci

In the framework of 2D circular membrane Micro-Electric-Mechanical-Systems (MEMS), a new non-linear second-order differential model with singularity in the steady-state case is presented in this paper. In particular, starting from the fact that the electric field magnitude is locally proportional to the curvature of the membrane, the problem is formalized in terms of the mean curvature. Then, a result of the existence of at least one solution is achieved. Finally, two different approaches prove that the uniqueness of the solutions is not ensured.


Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 465
Author(s):  
Paolo Di Barba ◽  
Luisa Fattorusso ◽  
Mario Versaci

An important problem in membrane micro-electric-mechanical-system (MEMS) modeling is the fringing-field phenomenon, of which the main effect consists of force-line deformation of electrostatic field E near the edges of the plates, producing the anomalous deformation of the membrane when external voltage V is applied. In the framework of a 2D circular membrane MEMS, representing the fringing-field effect depending on |∇u|2 with the u profile of the membrane, and since strong E produces strong deformation of the membrane, we consider |E| proportional to the mean curvature of the membrane, obtaining a new nonlinear second-order differential model without explicit singularities. In this paper, the main purpose was the analytical study of this model, obtaining an algebraic condition ensuring the existence of at least one solution for it that depends on both the electromechanical properties of the material constituting the membrane and the positive parameter δ that weighs the terms |∇u|2. However, even if the the study of the model did not ensure the uniqueness of the solution, it made it possible to achieve the goal of finding a stable equilibrium position. Moreover, a range of admissible values of V were obtained in order, on the one hand, to win the mechanical inertia of the membrane and, on the other hand, to ensure that the membrane did not touch the upper disk of the device. Lastly, some optimal control conditions based on the variation of potential energy are presented and discussed.


Computation ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 41
Author(s):  
Mario Versaci ◽  
Francesco Carlo Morabito

The recovery of the membrane profile of an electrostatic micro-electro-mechanical system (MEMS) is an important issue, because, when an external electrical voltage is applied, the membrane deforms with the risk of touching the upper plate of the device producing an unwanted electrostatic effect. Therefore, it is important to know whether the movement admits stable equilibrium configurations especially when the membrane is closed to the upper plate. In this framework, this work analyzes the behavior of a two-dimensional (2D) electrostatic circular membrane MEMS device subjected to an external voltage. Specifically, starting from a well-known 2D non-linear second-order differential model in which the electrostatic field in the device is proportional to the mean curvature of the membrane, the stability of the only possible equilibrium configuration is studied. Furthermore, when considering that the membrane is equipped with mechanical inertia and that it must not touch the upper plate of the device, a useful range of possible values has been obtained for the applied voltage. Finally, the paper concludes with some computations regarding the variation of potential energy, identifying some optimal control conditions.


Author(s):  
Shambhu N Sharma ◽  
H Parthasarathy

In classical mechanics, the two-body problem has been well studied. The governing equations form a system of two-coupled second-order nonlinear differential equations for the radial and angular coordinates. The perturbation induced by the astronomical disturbance like ‘dust’ is normally not considered in the orbit dynamics. Distributed dust produces an additional random force on the orbiting particle, which can be modelled as a random force having ‘Gaussian statistics’. The estimation of accurate positioning of the orbiting particle is not possible without accounting for the stochastic perturbation felt by the orbiting particle. The objective of this paper is to use the stochastic differential equation (SDE) formalism to study the effect of such disturbances on the orbiting body. Specifically, in this paper, we linearize SDEs about the mean of the state vector. The linearization operation performed above, transforms the system of SDEs into another system of SDEs that resembles a bilinear system, as described in signal processing and control literature. However, the mean trajectory of the resulting bilinear stochastic differential model does not preserve the perturbation effect felt by the orbiting particle; only the variance trajectory includes the perturbation effect. For this reason, the effectiveness of the dust-perturbed model is examined on the basis of the bilinear and second-order approximations of the system nonlinearity . The bilinear and second-order approximations of the system nonlinearity allow substantial simplifications for the numerical implementation and preserve some of the properties of the original stochastically perturbed model. Most notably, this paper reveals that the Brownian motion process is accurate to model and study the effect of dust perturbation on the orbiting particle. In addition, analytical findings are supported with finite difference method-based numerical simulations.


Author(s):  
Alessandro Goffi ◽  
Francesco Pediconi

AbstractWe investigate strong maximum (and minimum) principles for fully nonlinear second-order equations on Riemannian manifolds that are non-totally degenerate and satisfy appropriate scaling conditions. Our results apply to a large class of nonlinear operators, among which Pucci’s extremal operators, some singular operators such as those modeled on the p- and $$\infty $$ ∞ -Laplacian, and mean curvature-type problems. As a byproduct, we establish new strong comparison principles for some second-order uniformly elliptic problems when the manifold has nonnegative sectional curvature.


2020 ◽  
Vol 18 (1) ◽  
pp. 1518-1530
Author(s):  
Xuesen Qi ◽  
Ximin Liu

Abstract In this paper, we discuss the monotonicity of the first nonzero eigenvalue of the Laplace operator and the p-Laplace operator under a forced mean curvature flow (MCF). By imposing conditions associated with the mean curvature of the initial hypersurface and the coefficient function of the forcing term of a forced MCF, and some special pinching conditions on the second fundamental form of the initial hypersurface, we prove that the first nonzero closed eigenvalues of the Laplace operator and the p-Laplace operator are monotonic under the forced MCF, respectively, which partially generalize Mao and Zhao’s work. Moreover, we give an example to specify applications of conclusions obtained above.


2011 ◽  
Vol 18 (01) ◽  
pp. 71-85
Author(s):  
Fabrizio Cacciafesta

We provide a simple way to visualize the variance and the mean absolute error of a random variable with finite mean. Some application to options theory and to second order stochastic dominance is given: we show, among other, that the "call-put parity" may be seen as a Taylor formula.


Author(s):  
M. S. Longuet-Higgins

Imagine a nearly horizontal, statistically uniform, random surface ζ(x, y), Gaussian in the sense that the second derivatives , , have a normal joint distribution. The problem considered is the statistical distribution of the quantitywhere J and Ω denote the mean curvature and total curvature of the surface, respectively, and ν is a constant parameter.


Sign in / Sign up

Export Citation Format

Share Document