A note on the unsteady motion under gravity of a corner point on a free surface: a generalization of Stokes' theory

Author(s):  
D.J Needham ◽  
J Billingham

In this paper, we develop a theory based on local asymptotic coordinate expansions for the unsteady propagation of a corner point on the constant-pressure free surface bounding an incompressible inviscid fluid in irrotational motion under the action of gravity. This generalizes the result of Stokes and Michell relating to the horizontal propagation of a corner at constant speed.

Author(s):  
Didier Clamond

Steady two-dimensional surface capillary–gravity waves in irrotational motion are considered on constant depth. By exploiting the holomorphic properties in the physical plane and introducing some transformations of the boundary conditions at the free surface, new exact relations and equations for the free surface only are derived. In particular, a physical plane counterpart of the Babenko equation is obtained. This article is part of the theme issue ‘Nonlinear water waves’.


1962 ◽  
Vol 12 (3) ◽  
pp. 408-416 ◽  
Author(s):  
J. K. Walters ◽  
J. F. Davidson

The paper deals with the initial motion of a two-dimensional bubble starting from rest in the form of a cylinder with its axis horizontal. The theory is based on the assumptions of irrotational motion in the liquid round the bubble, constant pressure within the bubble, and small displacements from the cylindrical form. This theory predicts that the bubble should rise with the acceleration of gravity, over a distance of at least the initial bubble radius, and that a tongue of liquid should be projected up from the base of the bubble into its interior. These predictions are confirmed by experiments which also show how the vorticity necessary for steady motion in the spherical-cap form is generated by the detachment of two small bubbles from the back of the main bubble.


Author(s):  
Дамла Исидичи Демирель ◽  
Алессандро Яфрати ◽  
Александр Коробкин ◽  
Огуз Йилмаз

Двумерное импульсное течение жидкости изучается в рамках теории потенциального потока. Первоначально жидкость находится в состоянии покоя и удерживается на одной стороне вертикальной пластины. Она внезапно убирается и поток жидкости начинает течь под действием силы тяжести. Внимание уделяется особому поведению поля скоростей в нижней точке, где вертикальная свободная поверхность встречается с жестким дном. Линейная задача решается методом рядов Фурье. Решение внутренней области находится с помощью преобразования Меллина в нижней точке. Формирование струи наблюдается в нижней точке. Разрыв в верхней угловой точке исследуется с помощью Лагранжевых переменных. Для внешней задачи второго порядка используется метод декомпозиции области. Сравнение форм свободных поверхностей вблизи верхней угловой точки с решениями переднего и второго порядка показывает, что внешнее решение второго порядка имеет большее различие в вертикальной свободной поверхности, чем в горизонтальной части, по сравнению с решением ведущего порядка. Получена картина форм свободных поверхностей с использованием Лагранжевого описания для верхней части и Эйлерого описания для нижней части во втором порядке. Two dimensional impulsive flow of a fluid is studied within the potential flow theory. Initially the fluid is at rest and is held on one side of a vertical plate. The plate is withdrawn suddenly and gravity driven flow of the fluid starts. Attention is paid to the singular behaviour of the velocity field at the bottom point, where the vertical free surface meets the rigid bottom. The linear problem is solved by the Fourier series method. An inner region solution is found using Mellin transform at the bottom point. The jet formation is observed at the bottom point. Also the discontinuity at the upper corner point is dealt with Lagrangian variables. For the second order outer problem, domain decomposition method is used. Comparison of the shapes of the free surfaces near the upper corner point with leading and second order solutions shows that the second order outer solution outer makes a larger difference in the vertical free surface than in the horizontal portion, compared with leading order solution.The complete picture of the shapes of the free surfaces using Lagrangian description for the upper part and Eulerian description for the bottom part at the second order is obtained.


2006 ◽  
Vol 50 (01) ◽  
pp. 38-48 ◽  
Author(s):  
Gregory Zilman

The wave resistance, side force, and yawing moment acting on a hovercraft moving on the free surface of a heavy fluid is studied. The hovercraft is represented by a distributed excess pressure. Various types of pressure and bounding contours are considered. The sensitivity of the results to numerous uncertainties in the problem's physical parameters is investigated. It is found that constant pressure over a rectangular region moving with an angle of drift results in peculiar side force values. Several robust mathematical models of a moving hovercraft are proposed and analyzed.


We consider a class of inviscid free surface flows where the free surface is of finite length and in which the pressure on the free boundary p b is different from the free stream pressure p ∞ . The aim of the paper is to determine the shape of the free surface as a function of the velocity ratio parameter λ . The free boundary problem is tackled by seeking a mapping z ═ f (ζ) such that the flow past a circle in the ζ-plane maps to a flow with constant pressure p b on the free surface in the z -plane. The formulation leads to an infinite system of coupled nonlinear equations for the coefficients in the mapping function. Remarkably, the system can be solved exactly to yield two families of free surface flows of the form z ═ ζ + λ 2 /ζ + a ( λ ) ln (ζ + b ( λ )/ζ ─ b ( λ )). The nature of the solutions, their limitations and possible extensions to them are discussed.


Sign in / Sign up

Export Citation Format

Share Document