scholarly journals Bayesian adaptation of chaos representations using variational inference and sampling on geodesics

Author(s):  
P. Tsilifis ◽  
R. G. Ghanem

A novel approach is presented for constructing polynomial chaos representations of scalar quantities of interest (QoI) that extends previously developed methods for adaptation in Homogeneous Chaos spaces. In this work, we develop a Bayesian formulation of the problem that characterizes the posterior distributions of the series coefficients and the adaptation rotation matrix acting on the Gaussian input variables. The adaptation matrix is thus construed as a new parameter of the map from input to QoI, estimated through Bayesian inference. For the computation of the coefficients' posterior distribution, we use a variational inference approach that approximates the posterior with a member of the same exponential family as the prior, such that it minimizes a Kullback–Leibler criterion. On the other hand, the posterior distribution of the rotation matrix is explored by employing a Geodesic Monte Carlo sampling approach, consisting of a variation of the Hamiltonian Monte Carlo algorithm for embedded manifolds, in our case, the Stiefel manifold of orthonormal matrices. The performance of our method is demonstrated through a series of numerical examples, including the problem of multiphase flow in heterogeneous porous media.

Biometrika ◽  
2018 ◽  
Vol 106 (2) ◽  
pp. 479-486 ◽  
Author(s):  
Nicholas Syring ◽  
Ryan Martin

Summary Calibration of credible regions derived from under- or misspecified models is an important and challenging problem. In this paper, we introduce a scalar tuning parameter that controls the posterior distribution spread, and develop a Monte Carlo algorithm that sets this parameter so that the corresponding credible region achieves the nominal frequentist coverage probability.


2020 ◽  
Author(s):  
Xin Zhang ◽  
Andrew Curtis

<p><span>In a variety of geoscientific applications we require maps of subsurface properties together with the corresponding maps of uncertainties to assess their reliability. Seismic tomography is a method that is widely used to generate those maps. Since tomography is significantly nonlinear, Monte Carlo sampling methods are often used for this purpose, but they are generally computationally intractable for large data sets and high-dimensionality parameter spaces. To extend uncertainty analysis to larger systems, we introduce variational inference methods to conduct seismic tomography. In contrast to Monte Carlo sampling, variational methods solve the Bayesian inference problem as an optimization problem yet still provide fully nonlinear, probabilistic results. This is achieved by minimizing the Kullback-Leibler (KL) divergence between approximate and target probability distributions within a predefined family of probability distributions.</span></p><p><span>We introduce two variational inference methods: automatic differential variational inference (ADVI) and Stein variational gradient descent (SVGD). In ADVI a Gaussian probability distribution is assumed and optimized to approximate the posterior probability distribution. In SVGD a smooth transform is iteratively applied to an initial probability distribution to obtain an approximation to the posterior probability distribution. At each iteration the transform is determined by seeking the steepest descent direction that minimizes the KL-divergence. </span></p><p><span>We apply the two variational inference methods to 2D travel time tomography using both synthetic and real data, and compare the results to those obtained from two different Monte Carlo sampling methods: Metropolis-Hastings Markov chain Monte Carlo (MH-McMC) and reversible jump Markov chain Monte Carlo (rj-McMC). The results show that ADVI provides a biased approximation because of its Gaussian approximation, whereas SVGD produces more accurate approximations to the results of MH-McMC. In comparison rj-McMC produces smoother mean velocity models and lower standard deviations because the parameterization used in rj-McMC (Voronoi cells) imposes prior restrictions on the pixelated form of models: all pixels within each Voronoi cell have identical velocities. This suggests that the results of rj-McMC need to be interpreted in the light of the specific prior information imposed by the parameterization. Both variational methods estimate the posterior distribution at significantly lower computational cost, provided that gradients of parameters with respect to data can be calculated efficiently. We therefore expect that the methods can be applied fruitfully to many other types of geophysical inverse problems.</span></p>


2017 ◽  
Vol 114 (27) ◽  
pp. 6924-6929 ◽  
Author(s):  
Daan Frenkel ◽  
K. Julian Schrenk ◽  
Stefano Martiniani

Conventional Monte Carlo simulations are stochastic in the sense that the acceptance of a trial move is decided by comparing a computed acceptance probability with a random number, uniformly distributed between 0 and 1. Here, we consider the case that the weight determining the acceptance probability itself is fluctuating. This situation is common in many numerical studies. We show that it is possible to construct a rigorous Monte Carlo algorithm that visits points in state space with a probability proportional to their average weight. The same approach may have applications for certain classes of high-throughput experiments and the analysis of noisy datasets.


Author(s):  
Richelle H. Streater ◽  
Anne-Michelle R. Lieberson ◽  
Adam L. Pintar ◽  
Zachary H. Levine

The MCML program for Monte Carlo modeling of light transport in multi-layered tissues has been widely used in the past 20 years or so. Here, we have re-implemented MCML for solving the inverse problem. Our formulation features optimizing the profile log likelihood which takes into account uncertainties due to both experimental and Monte Carlo sampling. We limit the search space for the optimum parameters with relatively few Monte Carlo trials and then iteratively double the number of Monte Carlo trials until the search space stabilizes. At this point, the log likelihood can be fit with a quadratic function to find the optimum. The time-to-solution is only a few minutes in typical cases because we use importance sampling to determine the log likelihood on a grid of parameters at each iteration. Also, our implementation uses OpenMP and SPRNG to generate Monte Carlo trials in parallel.


CivilEng ◽  
2020 ◽  
Vol 1 (2) ◽  
pp. 106-131
Author(s):  
Natalia Papathanasiou ◽  
Bryan T. Adey

Railway managers identify and prioritize assets for risk-reducing interventions. This requires the estimation of risks due to failures, as well as the estimation of costs and effects due to interventions. This, in turn, requires the estimation of values of numerous input variables. As there is uncertainty related to the initial input estimates, there is uncertainty in the output, i.e., assets to be prioritized for risk-reducing interventions. Consequently, managers are confronted with two questions: Do the uncertainties in inputs cause significant uncertainty in the output? If so, where should efforts be concentrated to quantify them? This paper discusses the identification of input uncertainties that are likely to affect railway asset prioritization for risk-reducing interventions. Once the track sections, switches and bridges of a part of the Irish railway network were prioritized using best estimates of inputs, they were again prioritized using: (1) reasonably low and high estimates, and (2) Monte Carlo sampling from skewed normal distributions, where the low and high estimates encompass the 95% confidence interval. The results show that only uncertainty in a few inputs influences the prioritization of the assets for risk-reducing interventions. Reliable prioritization of assets can be achieved by quantifying the uncertainties in these particular inputs.


Author(s):  
Manas Mejari ◽  
Dario Piga

Abstract This paper addresses Maximum-A-Posteriori (MAP) estimation of Linear Time-Invariant State-Space (LTI-SS) models. The joint posterior distribution of the model matrices and the unknown state sequence is approximated by using Rao-Blackwellized Monte-Carlo sampling algorithms. Specifically, the conditional distribution of the state sequence given the model parameters is derived analytically, while only the marginal posterior distribution of the model matrices is approximated using a Metropolis-Hastings Markov-Chain Monte-Carlo sampler. From the joint distribution, MAP estimates of the unknown model matrices as well as the state sequence are computed. The performance of the proposed algorithm is demonstrated on a numerical example and on a real laboratory benchmark dataset of a hair dryer process.


Sign in / Sign up

Export Citation Format

Share Document