scholarly journals Nonlinear stochastic modelling with Langevin regression

Author(s):  
J. L. Callaham ◽  
J.-C. Loiseau ◽  
G. Rigas ◽  
S. L. Brunton

Many physical systems characterized by nonlinear multiscale interactions can be modelled by treating unresolved degrees of freedom as random fluctuations. However, even when the microscopic governing equations and qualitative macroscopic behaviour are known, it is often difficult to derive a stochastic model that is consistent with observations. This is especially true for systems such as turbulence where the perturbations do not behave like Gaussian white noise, introducing non-Markovian behaviour to the dynamics. We address these challenges with a framework for identifying interpretable stochastic nonlinear dynamics from experimental data, using forward and adjoint Fokker–Planck equations to enforce statistical consistency. If the form of the Langevin equation is unknown, a simple sparsifying procedure can provide an appropriate functional form. We demonstrate that this method can learn stochastic models in two artificial examples: recovering a nonlinear Langevin equation forced by coloured noise and approximating the second-order dynamics of a particle in a double-well potential with the corresponding first-order bifurcation normal form. Finally, we apply Langevin regression to experimental measurements of a turbulent bluff body wake and show that the statistical behaviour of the centre of pressure can be described by the dynamics of the corresponding laminar flow driven by nonlinear state-dependent noise.

Author(s):  
Luca Giuggioli ◽  
Zohar Neu

Noise and time delays, or history-dependent processes, play an integral part in many natural and man-made systems. The resulting interplay between random fluctuations and time non-locality are essential features of the emerging complex dynamics in non-Markov systems. While stochastic differential equations in the form of Langevin equations with additive noise for such systems exist, the corresponding probabilistic formalism is yet to be developed. Here we introduce such a framework via an infinite hierarchy of coupled Fokker–Planck equations for the n -time probability distribution. When the non-Markov Langevin equation is linear, we show how the hierarchy can be truncated at n  = 2 by converting the time non-local Langevin equation to a time-local one with additive coloured noise. We compare the resulting Fokker–Planck equations to an earlier version, solve them analytically and analyse the temporal features of the probability distributions that would allow to distinguish between Markov and non-Markov features. This article is part of the theme issue ‘Nonlinear dynamics of delay systems’.


2019 ◽  
Vol 24 (6) ◽  
Author(s):  
Hamid Baghani ◽  
J. Nieto

In this paper, we study a nonlinear Langevin equation involving two fractional orders  α ∈ (0; 1] and β ∈ (1; 2] with initial conditions. By means of an interesting fixed point theorem, we establish sufficient conditions for the existence and uniqueness of solutions for the fractional equations. Some illustrative numerical examples are also discussed. 


RSC Advances ◽  
2019 ◽  
Vol 9 (69) ◽  
pp. 40214-40221 ◽  
Author(s):  
Anh D. Phan ◽  
Katsunori Wakabayashi ◽  
Marian Paluch ◽  
Vu D. Lam

Theoretical approaches are formulated to investigate the molecular mobility under various cooling rates of amorphous drugs.


2020 ◽  
Vol 31 (20) ◽  
pp. 2378-2389
Author(s):  
Vahid Azadeh-Ranjbar ◽  
Yi Han ◽  
Niell Elvin ◽  
Yiannis Andreopoulos

The presence of a bluff body upstream of a cantilever beam promotes persistent, aero-elastic vibrations of the beam. Vortex-induced vibration in an array of two mutually interacting bluff bodies in such configurations undergoing two-degrees of freedom transverse oscillation has not been investigated before. In the present work, we have studied experimentally, the unsteady response of an array of two similar rigid cylinders, positioned side-by-side in reference to the freestream velocity, each one mounted on the upstream end of an elastic cantilever beam. By fitting the beams with piezoelectric layers, these configurations are converted to piezoelectric fluid energy harvesters (PFEH) that can extract small amounts of energy from the flow. Comparing the performance of linear (L-PFEH), non-linear (NL-PFEH), and a non-linear array (NLA-PFEH) of harvesters show that NLA-PFEH has the widest broadband operating velocity range and the greatest generated power followed by NL-PFEH and then L-PFEH. The maximum electric power output of NLA-PFEH was ~1000% greater than for NL-PFEH with a corresponding ~250% increase in the operating velocity range. Different cylinder configurations reveal the presence of hysteresis in the behavior of NLA-PFEH when the distance between the cylinders (so-called cylinder gap to diameter ratio), G/ D < 0.5. At large distances from each other ( G/ D ≥ 4), the two cylinders behave like independent, isolated harvester units with rather weak mutual interaction.


2014 ◽  
Vol 49 (6) ◽  
pp. 277-286 ◽  
Author(s):  
B. Ahmad ◽  
J. J. Nieto ◽  
A. Alsaedi ◽  
H. Al-Hutami

2016 ◽  
Vol 802 ◽  
pp. 726-749 ◽  
Author(s):  
R. D. Brackston ◽  
J. M. García de la Cruz ◽  
A. Wynn ◽  
G. Rigas ◽  
J. F. Morrison

A specific feature of three-dimensional bluff body wakes, flow bistability, is a subject of particular recent interest. This feature consists of a random flipping of the wake between two asymmetric configurations and is believed to contribute to the pressure drag of many bluff bodies. In this study we apply the modelling approach recently suggested for axisymmetric bodies by Rigaset al.(J. Fluid Mech., vol. 778, 2015, R2) to the reflectional symmetry-breaking modes of a rectilinear bluff body wake. We demonstrate the validity of the model and its Reynolds number independence through time-resolved base pressure measurements of the natural wake. Further, oscillating flaps are used to investigate the dynamics and time scales of the instability associated with the flipping process, demonstrating that they are largely independent of Reynolds number. The modelling approach is then used to design a feedback controller that uses the flaps to suppress the symmetry-breaking modes. The controller is successful, leading to a suppression of the bistability of the wake, with concomitant reductions in both lateral and streamwise forces. Importantly, the controller is found to be efficient, the actuator requiring only 24 % of the aerodynamic power saving. The controller therefore provides a key demonstration of efficient feedback control used to reduce the drag of a high-Reynolds-number three-dimensional bluff body. Furthermore, the results suggest that suppression of large-scale structures is a fundamentally efficient approach for bluff body drag reduction.


Sign in / Sign up

Export Citation Format

Share Document