scholarly journals Invariant analysis, exact solutions and conservation laws of (2+1)-dimensional time fractional Navier–Stokes equations

Author(s):  
Xiaoyu Cheng ◽  
Lizhen Wang

In this paper, we investigate the exact solutions and conservation laws of (2 + 1)-dimensional time fractional Navier–Stokes equations (TFNSE). Specifically, Lie symmetries and corresponding one-dimensional optimal system for TFNSE in Riemann–Liouville sense are obtained. Then, based on the admitted symmetries and optimal system, we reduce these equations to one-dimensional equations or (1 + 1)-dimensional fractional partial differential equations (PDEs) with the help of Erdélyi–Kober fractional differential operator and compound variable transformation. In addition, we solve the reduced PDEs applying power series expansion method and invariant subspace method, respectively. Furthermore, the conservation laws of TFNSE are derived using new Noether theorem.

2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Khadijo Rashid Adem ◽  
Chaudry Masood Khalique

Lie symmetry analysis is performed on a generalized two-dimensional nonlinear Kadomtsev-Petviashvili-modified equal width equation. The symmetries and adjoint representations for this equation are given and an optimal system of one-dimensional subalgebras is derived. The similarity reductions and exact solutions with the aid ofG′/G-expansion method are obtained based on the optimal systems of one-dimensional subalgebras. Finally conservation laws are constructed by using the multiplier method.


1972 ◽  
Vol 94 (2) ◽  
pp. 467-472 ◽  
Author(s):  
D. A. P. Jayasinghe ◽  
H. J. Leutheusser

This paper deals with elastic waves which may be generated in a fluid by the sudden movement of a flow boundary. In particular, an analysis of the classical piston, or signalling problem is presented for the special case of arbitrary velocity input into a stationary fluid contained in a circular, semi-infinite waveguide. The decay of the pulse, as well as the resulting flow development in the inlet region of the pipe are analyzed by means of an asymptotic expansion of the suitably nondimensionalized Navier-Stokes equations for a compressible, nonheat-conducting Newtonian fluid. The results differ significantly from those of the more conventional one-dimensional approach based on the so-called telegrapher’s equation of mathematical physics. The present theory realistically predicts the growth of a boundary layer both in time and position and, hence, it appears to represent the transient fluid motion in a manner which is physically more appealing.


Author(s):  
Moustafa El-Shahed ◽  
Ahmed Salem

In this paper, we present a general Inodel of the classical Navier-Stokes equations. With the help of Laplace, Fourier Sine transforms, finite Fourier Sine transforms, and finite Hankel transforms, an exact solutions for three different special cases have been obtained.


2016 ◽  
pp. 101-142 ◽  
Author(s):  
Hermann Schlichting ◽  
Klaus Gersten

Sign in / Sign up

Export Citation Format

Share Document