Synaptic organization of the inner plexiform layer of the retina of Xenopus laevis

The inner plexiform layer (i. p. l.) of the retina of the South African clawed frog, Xenopus laevis , was studied by electron microscopy. Photomicrographs of single sections revealed synaptic morphologies comparable to those in other vertebrate retinae. In a partial serial reconstruction of a bipolar terminal, however, some unusual arrangements were found. The bipolar terminal made some synapses that at first examination appeared much like conventional synapses, but subsequent sections always revealed an extremely small ribbon. Many of the ribbon synapses were found to contact more than two postsynaptic processes; up to six pro­cesses postsynaptic to one ribbon contact were seen. A reciprocal synapse was not evident at each ribbon synapse. Montages of the entire width of the inner plexiform layer were constructed from sections cut from four different locations across the retina. The numbers of conventional and ribbon synapses per unit volume of tissue were determined. The synaptic densities found in Xenopus were much lower than those reported for other frogs. Differences in synaptic densities from the four locations were found to be statistically insignificant. The overall amacrine/bipolar synapse ratio was 6.8/1. The synaptic den­sities in the inner plexiform layer did not change when the tissue was stained with lead citrate alone rather than with uranyl acetate and lead citrate. The functional significance of the morphological and quantitative synaptic arrangements in Xenopus i. p. l. is discussed, and the synaptic organization is compared to that of other amphibia and vertebrates.

1996 ◽  
Vol 13 (4) ◽  
pp. 759-771 ◽  
Author(s):  
Marco Sassoè-Pognetto ◽  
Andreas Feigenspan ◽  
Joachim Bormann ◽  
Heinz Wässle

AbstractVertical Slices of postnatal day 6 (P6) rat retina were cut and cultured using the roller-tube technique. The organotypic differentiation during a culture period of up to 30 days has been described in a previous study (Feigenspan et al., 1993a). Here we concentrated on the synaptic organization in the retinal slice culture. Electron microscopy revealed the presence of ribbon synapses in the outer plexiform layer and conventional and ribbon syanpses in the inner plexiform layer. Immunofluroscence with antibodies that recognize specific subunits of GABAA or glycine receptors revealed a punctuate distribution of the receptors. They were aggregated in “hot spots” that correspond to a concentration of receptors at postsynaptic sites. Different isoforms of GABAA and glycine receptors occured in the slice cultures. The experiments show that there is a differentiation of synapses and a diversity of transmitter receptors in the slice cultures that is comparable to the in vivo retina.


2001 ◽  
Vol 18 (5) ◽  
pp. 695-702 ◽  
Author(s):  
ALLAN F. WIECHMANN ◽  
CELESTE R. WIRSIG-WIECHMANN

In the retina of the African clawed frog (Xenopus laevis), melatonin is synthesized by the photoreceptors at night, and binds to receptors that likely mediate paracrine responses. Melatonin appears to alter the sensitivity of the retinal cells to light, and may play a key role in regulating important circadian events that occur in the eye. A polyclonal antibody was raised against a 13 amino acid peptide corresponding to a region of the third cytoplasmic loop of the Xenopus laevis Mel1c melatonin receptor. Western blot analysis revealed a major immunoreactive band of approximately 60 kD in neural retina and retinal pigment epithelium (RPE) membranes. Immunocytochemical labeling of sections of Xenopus eyes demonstrated intense melatonin receptor-like immunoreactivity in the inner plexiform layer (IPL). Immunolabeling with antibodies to glutamate decarboxylase (GAD) or tyrosine hydroxylase (TOH) appeared to co-localize with the melatonin receptor immunoreactivity in different sublaminas of the IPL. This suggests that both GABAergic and dopaminergic amacrine cells express melatonin receptor protein. There were also some melatonin receptor immunoreactive varicose fibers in the IPL that did not co-localize with either TOH or GAD, and may represent efferent fibers, since they could be followed into the optic nerve. Melatonin receptor immunoreactivity was also present on cell soma in the ganglion cell layer. Furthermore, a moderate level of melatonin receptor immunoreactivity was observed in the RPE and rod and cone photoreceptor cells. The presence of melatonin receptor immunoreactivity in these cells supports previous observations of melatonin receptor RNA expression in multiple cell types in the Xenopus retina. Expression of melatonin receptor protein in the photoreceptors suggests that melatonin may have a direct action on these cells.


1995 ◽  
Vol 198 (12) ◽  
pp. 2465-2475 ◽  
Author(s):  
D Hastings ◽  
W Burggren

Well-developed larval Xenopus laevis (NF stages 58­66) are oxygen regulators, at least during mild hypoxia. When and how they change from oxygen conformers (the presumed condition of the fertilized egg) to oxygen regulators is unknown. Also unknown is how anaerobic metabolic capabilities change during development, especially in response to acute hypoxia, and to what extent, if any, anaerobiosis is used to supplement aerobic metabolism. Consequently, we have investigated resting rates of oxygen consumption (M.O2) and concentrations of whole-body lactate (lactic acid) during development in normoxia and in response to acute hypoxia in Xenopus laevis. M.O2 increased in an episodic, non-linear fashion during development. Resting, normoxic M.O2 increased about tenfold (to approximately 0.20 µmol g-1 h-1) between NF stages 1­39 and 40­44, and then another tenfold between NF stages 45­48 and 49­51 (to approximately 2.0 µmol g-1 h-1), remaining at about 2 µmol g-1 h-1 for the remainder of larval development. M.O2 reached its highest level in newly metamorphosed frogs (nearly 4 µmol g-1 h-1), before decreasing to about 1.0 µmol g-1 h-1 in large adults. X. laevis embryos and larvae up to NF stage 54­57 were oxygen conformers when exposed to variable levels of acute hypoxia. The only exception was NF stage 45­48 (external gills present yet body mass still very small), which showed some capability of oxygen regulation. All larvae older than stage 54­57 and adults were oxygen regulators and had the lowest values of Pcrit (the oxygen partial pressure at which M.O2 begins to decline). Whole-body lactate concentration in normoxia was about 1 µmol g-1 for all larval groups, rising to about 12 µmol g-1 in adults. Concentrations of lactic acid in NF stages 1­51 were unaffected by even severe ambient hypoxia. However, whole-body lactate levels in NF stages 52­66 increased in response to severe hypoxia, indicating that some anaerobic metabolism was being used to supplement diminishing aerobic metabolism. The largest increases in concentration of lactate occurred in late larvae and adults.


2011 ◽  
Vol 35 (11) ◽  
pp. 1159-1165 ◽  
Author(s):  
Xianwei Cui ◽  
Yangyang Han ◽  
Yangbin Pan ◽  
Xingzhou Xu ◽  
Wenhua Ren ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document