scholarly journals Sexually selected females in the monogamous Western Australian seahorse

2006 ◽  
Vol 274 (1609) ◽  
pp. 521-525 ◽  
Author(s):  
Charlotta Kvarnemo ◽  
Glenn I Moore ◽  
Adam G Jones

Studies of sexual selection in monogamous species have hitherto focused on sexual selection among males. Here, we provide empirical documentation that sexual selection can also act strongly on females in a natural population with a monogamous mating system. In our field-based genetic study of the monogamous Western Australian seahorse, Hippocampus subelongatus , sexual selection differentials and gradients show that females are under stronger sexual selection than males: mated females are larger than unmated ones, whereas mated and unmated males do not differ in size. In addition, the opportunity for sexual selection (variance in mating success divided by its mean squared) for females is almost three times that for males. These results, which seem to be generated by a combination of a male preference for larger females and a female-biased adult sex ratio, indicate that substantial sexual selection on females is a potentially important but under-appreciated evolutionary phenomenon in monogamous species.

2020 ◽  
Vol 40 (6) ◽  
pp. 649-656
Author(s):  
Juan C Azofeifa-Solano ◽  
Jeffrey A Sibaja-Cordero ◽  
Ingo S Wehrtmann

Abstract The sexual selection over traits that favor access to mating partners could promote the emergence of sexual dimorphism when the pressure is different between sexes. Monogamous species are considered to have a low degree of sexual dimorphism. The highly diverse snapping shrimps are usually regarded as monogamous, but the mating system has been studied only in few species. We aimed to provide insights into the mating system and sexual dimorphism of Alpheus colombiensisWicksten, 1988. The adult sex ratio was female biased, and solitary ovigerous females were found, suggesting a temporary mate guarding type of mating system. Our results also revealed sexual dimorphism on the snapping claw, which is larger in males than in females. The male’s snapping claw is probably under sexual selection, which can be mediated by male-male competition or female choice. We also estimated the A. colombiensis female size at maturity at 5.2 ± 0.76 mm. Our results contradict the common idea that snapping shrimps are monogamous species, and support that A. colombiensis probably have a temporary mate guarding (e.g., males can sexually interact with more than one female, in opposition to sexual monogamy). This study also sustains the growing evidence that alpheid shrimps display snapping claw sexual dimorphism.


2017 ◽  
Vol 114 (27) ◽  
pp. E5474-E5481 ◽  
Author(s):  
Luke J. Eberhart-Phillips ◽  
Clemens Küpper ◽  
Tom E. X. Miller ◽  
Medardo Cruz-López ◽  
Kathryn H. Maher ◽  
...  

Adult sex ratio (ASR) is a central concept in population biology and a key factor in sexual selection, but why do most demographic models ignore sex biases? Vital rates often vary between the sexes and across life history, but their relative contributions to ASR variation remain poorly understood—an essential step to evaluate sex ratio theories in the wild and inform conservation. Here, we combine structured two-sex population models with individual-based mark–recapture data from an intensively monitored polygamous population of snowy plovers. We show that a strongly male-biased ASR (0.63) is primarily driven by sex-specific survival of juveniles rather than adults or dependent offspring. This finding provides empirical support for theories of unbiased sex allocation when sex differences in survival arise after the period of parental investment. Importantly, a conventional model ignoring sex biases significantly overestimated population viability. We suggest that sex-specific population models are essential to understand the population dynamics of sexual organisms: reproduction and population growth are most sensitive to perturbations in survival of the limiting sex. Overall, our study suggests that sex-biased early survival may contribute toward mating system evolution and population persistence, with implications for both sexual selection theory and biodiversity conservation.


2015 ◽  
Vol 2 (1) ◽  
pp. 140402 ◽  
Author(s):  
Ryan Schacht ◽  
Monique Borgerhoff Mulder

Characterizations of coy females and ardent males are rooted in models of sexual selection that are increasingly outdated. Evolutionary feedbacks can strongly influence the sex roles and subsequent patterns of sex differentiated investment in mating effort, with a key component being the adult sex ratio (ASR). Using data from eight Makushi communities of southern Guyana, characterized by varying ASRs contingent on migration, we show that even within a single ethnic group, male mating effort varies in predictable ways with the ASR. At male-biased sex ratios, men's and women's investment in mating effort are indistinguishable; only when men are in the minority are they more inclined towards short-term, low investment relationships than women. Our results support the behavioural ecological tenet that reproductive strategies are predictable and contingent on varying situational factors.


Author(s):  
Leigh W. Simmons

‘Mating systems, or who goes with whom, and for how long’ examines the variation in how males and females associate during the breeding season, ranging from brief couplings with multiple partners to lifelong monogamy. It also shows how the discovery that females mate with many partners, even in supposedly monogamous species such as songbirds, was made possible by modern genetic techniques. Variation in mating systems holds considerable implications for the operation of sexual selection. The way that animal mating systems have been explained historically is outlined before considering how a more contemporary understanding of genetic and social relationships has reshaped our thinking and how understanding a species’ mating system can have practical applications.


2021 ◽  
Author(s):  
Nathan William Burke ◽  
Gregory I Holwell

Pre-copulatory sexual cannibalism, or cannibalism without mating, is expected to promote the evolution of male strategies that enhance mating success and reduce the risk of cannibalism, such as preferential mating with feeding females. However, sexual selection on male competitiveness may alter male courtship decisions in the face of cannibalism risk. We investigated the effect of prey availability and rival presence on male mating decisions in the highly cannibalistic Springbok mantis, Miomantis caffra. We found that males approached females more rapidly and mated more often in the presence of prey, suggesting that females distracted with foraging may be less of a threat. The presence of a rival also hastened the onset of copulation and led to higher mating success, with very large effects occurring in the presence of both prey and rivals, indicating that intrasexual competition may intensify attraction to foraging females. Taken together, our results suggest that pre-copulatory cannibalism has selected for male preference for foraging females, and that males adjust their mating strategy to both the risk of competition and the threat of cannibalism.


2019 ◽  
Vol 116 (26) ◽  
pp. 12919-12924 ◽  
Author(s):  
Da Yin ◽  
Eric S. Haag

The maintenance of males at intermediate frequencies is an important evolutionary problem. Several species ofCaenorhabditisnematodes have evolved a mating system in which selfing hermaphrodites and males coexist. While selfing produces XX hermaphrodites, cross-fertilization produces 50% XO male progeny. Thus, male mating success dictates the sex ratio. Here, we focus on the contribution of themale secreted short(mss) gene family to male mating success, sex ratio, and population growth. Themssfamily is essential for sperm competitiveness in gonochoristic species, but has been lost in parallel in androdioecious species. Using a transgene to restoremssfunction to the androdioeciousCaenorhabditis briggsae,we examined how mating system and population subdivision influence the fitness of themss+genotype. Consistent with theoretical expectations, whenmss+andmss-null (i.e., wild type) genotypes compete,mss+is positively selected in both mixed-mating and strictly outcrossing situations, though more strongly in the latter. Thus, while sexual mode alone affects the fitness ofmss+, it is insufficient to explain its parallel loss. However, in genetically homogenous androdioecious populations,mss+both increases male frequency and depresses population growth. We propose that the lack of inbreeding depression and the strong subdivision that characterize naturalCaenorhabditispopulations impose selection on sex ratio that makes loss ofmssadaptive after self-fertility evolves.


2020 ◽  
Vol 7 (1) ◽  
pp. 191548 ◽  
Author(s):  
Milene G. Gaiotti ◽  
Michael S. Webster ◽  
Regina H. Macedo

Most of the diversity in the mating systems of birds and other animals comes at higher taxonomic levels, such as across orders. Although divergent selective pressures should lead to animal mating systems that diverge sharply from those of close relatives, opportunities to examine the importance of such processes are scarce. We addressed this issue using the Araripe manakin ( Antilophia bokermanni ), a species endemic to a forest enclave surrounded by xeric shrublands in Brazil. Most manakins exhibit polygynous lekking mating systems that lack territoriality but exhibit strong sexual selection. In sharp contrast, we found that male Araripe manakins defended exclusive territories, and females nested within male territories. However, territoriality and offspring paternity were dissociated: males sired only 7% of nestlings from the nests within their territories and non-territorial males sired numerous nestlings. Moreover, female polyandry was widespread, with most broods exhibiting mixed paternity. Apparently, territories in this species function differently from both lekking arenas and resource-based territories of socially monogamous species. The unexpected territoriality of Araripe manakins and its dissociation from paternity is a unique evolutionary development within the manakin clade. Collectively, our findings underscore how divergences in mating systems might evolve based on selective pressures from novel environmental contexts.


2010 ◽  
Vol 365 (1552) ◽  
pp. 2541-2548 ◽  
Author(s):  
Dominic A. Edward ◽  
Claudia Fricke ◽  
Tracey Chapman

Artificial selection and experimental evolution document natural selection under controlled conditions. Collectively, these techniques are continuing to provide fresh and important insights into the genetic basis of evolutionary change, and are now being employed to investigate mating behaviour. Here, we focus on how selection techniques can reveal the genetic basis of post-mating adaptations to sexual selection and sexual conflict. Alteration of the operational sex ratio of adult Drosophila over just a few tens of generations can lead to altered ejaculate allocation patterns and the evolution of resistance in females to the costly effects of elevated mating rates. We provide new data to show how male responses to the presence of rivals can evolve. For several traits, the way in which males responded to rivals was opposite in lines selected for male-biased, as opposed to female-biased, adult sex ratio. This shows that the manipulation of the relative intensity of intra- and inter-sexual selection can lead to replicable and repeatable effects on mating systems, and reveals the potential for significant contemporary evolutionary change. Such studies, with important safeguards, have potential utility for understanding sexual selection and sexual conflict across many taxa. We discuss how artificial selection studies combined with genomics will continue to deepen our knowledge of the evolutionary principles first laid down by Darwin 150 years ago.


2017 ◽  
Author(s):  
Luke J. Eberhart-Phillips ◽  
Clemens Küpper ◽  
Tom E. X. Miller ◽  
Medardo Cruz-López ◽  
Kathryn H. Maher ◽  
...  

ABSTRACTAdult sex ratio (ASR) is a central concept in population biology and a key factor in sexual selection, yet why do most demographic models ignore sex-biases? Vital rates often vary between the sexes and across life history, but their relative contributions to ASR variation remain poorly understood—an essential step to evaluate sex ratio theories in the wild and inform conservation. Here we combine structured two-sex population models with individual-based mark-recapture data from an intensively monitored polygamous population of snowy plovers. We show that a strongly male-biased ASR is primarily driven by sex-specific survival of juveniles, rather than adults or dependent offspring. This provides empirical support for theories of unbiased sex allocation when sex-differences in survival arise after the period of parental investment. Importantly, a conventional model ignoring sex-biases significantly overestimated population viability. We suggest that sex-specific population models are essential to understand the population dynamics of sexual organisms: reproduction and population growth is most sensitive to perturbations in survival of the limiting sex. Overall, our study suggests that sex-biased early survival may contribute towards mating system evolution and population persistence, with implications for both sexual selection theory and biodiversity conservation.SIGNIFICANCE STATEMENTSex biases are widespread in nature and represent a fundamental component of sexual selection and population biology—but at which point in life history do these biases emerge? Here we report a detailed individual-based demographic analysis of an intensively studied wild bird population to evaluate the origins of sex biases and their consequences on mating strategies and population dynamics. We document a strongly male-biased adult sex ratio, which is consistent with behavioral observations of female-biased polygamy. Notably, sex-biased juvenile, rather than adult survival, contributed most to the adult sex ratio. Sex-biases also strongly influenced population viability, which was significantly overestimated when sex ratio and mating system were ignored. Our study therefore has implications for both sexual selection theory and biodiversity conservation.


Author(s):  
Nathan W Burke ◽  
Gregory I Holwell

Abstract Precopulatory sexual cannibalism—or cannibalism without mating—is expected to promote the evolution of male strategies that enhance mating success and reduce the risk of cannibalism, such as preferentially approaching feeding females. Sexual selection on male competitiveness has the potential to alter male mating decisions in the face of cannibalism risk, but such effects are poorly understood. We investigated the effect of prey availability and male–male competition on mating incidence in the highly cannibalistic Springbok mantis, Miomantis caffra. We found that matings were initiated more rapidly and more often in the presence of prey, suggesting that females distracted with foraging may be less of a threat. Competition between males also hastened the onset of copulation and led to higher mating success, with very large effects occurring in the presence of both prey and competitors, indicating that intrasexual competition may intensify attraction to foraging females. Taken together, our results suggest that precopulatory cannibalism has selected for male preference for foraging females and that males adjust their mating strategy to both the risk of competition and the threat of cannibalism.


Sign in / Sign up

Export Citation Format

Share Document