scholarly journals A cascade of evolutionary change alters consumer-resource dynamics and ecosystem function

2012 ◽  
Vol 279 (1741) ◽  
pp. 3184-3192 ◽  
Author(s):  
Matthew R. Walsh ◽  
John P. DeLong ◽  
Torrance C. Hanley ◽  
David M. Post

It is becoming increasingly clear that intraspecific evolutionary divergence influences the properties of populations, communities and ecosystems. The different ecological impacts of phenotypes and genotypes may alter selection on many species and promote a cascade of ecological and evolutionary change throughout the food web. Theory predicts that evolutionary interactions across trophic levels may contribute to hypothesized feedbacks between ecology and evolution. However, the importance of ‘cascading evolutionary change’ in a natural setting is unknown. In lakes in Connecticut, USA, variation in migratory behaviour and feeding morphology of a fish predator, the alewife ( Alosa pseudoharengus ), drives life-history evolution in a species of zooplankton prey ( Daphnia ambigua ). Here we evaluated the reciprocal impacts of Daphnia evolution on ecological processes in laboratory mesocosms. We show that life-history evolution in Daphnia facilitates divergence in rates of population growth, which in turn significantly alters consumer-resource dynamics and ecosystem function. These experimental results parallel trends observed in lakes. Such results argue that a cascade of evolutionary change, which has occurred over contemporary timescales, alters community and ecosystem processes.

2010 ◽  
Vol 59 (5) ◽  
pp. 504-517 ◽  
Author(s):  
Jonathan M. Waters ◽  
Diane L. Rowe ◽  
Christopher P. Burridge ◽  
Graham P. Wallis

2015 ◽  
Vol 8 (7) ◽  
pp. 635-649 ◽  
Author(s):  
Emilie Snell‐Rood ◽  
Rickey Cothran ◽  
Anne Espeset ◽  
Punidan Jeyasingh ◽  
Sarah Hobbie ◽  
...  

2006 ◽  
Vol 84 (1) ◽  
pp. 143-150 ◽  
Author(s):  
Stephen P. Bonser ◽  
Lonnie W. Aarssen

Generalisations of life histories in plants are often framed in terms of allocation to reproduction. For example, relative allocation to reproduction is commonly found to be higher in semelparous than in iteroparous plant species. However, the association between vegetative traits and life history has been largely unexplored. In higher plants, reproductive and vegetative function can be measured in terms of meristem allocation. Under this approach, two vegetative traits (apical dominance (the suppression of axillary meristem development) and branching intensity (the commitment of axillary meristems to branches)) can be measured as well as one reproductive trait (reproductive effort). We used phylogenetically independent contrasts to compare reproductive and vegetative function in annual semelparous and perennial iteroparous species. Twenty congeneric species pairs (each species pair represented by one semelparous and one iteroparous species) across nine families were selected based on availability of herbarium specimens. Semelparous life-history evolution was associated with higher reproductive effort. Conversely, iteroparous life-history evolution was associated with higher apical dominance. Branching intensity was not associated with life history. An evolutionary association between life history and apical dominance but not branching intensity suggests a complex relationship between allocation to vegetative traits and the evolution of plant strategies across environments.


Oikos ◽  
1982 ◽  
Vol 38 (1) ◽  
pp. 118 ◽  
Author(s):  
William J. Etges

Sign in / Sign up

Export Citation Format

Share Document