scholarly journals Climate change alters the structure of arctic marine food webs due to poleward shifts of boreal generalists

2015 ◽  
Vol 282 (1814) ◽  
pp. 20151546 ◽  
Author(s):  
Susanne Kortsch ◽  
Raul Primicerio ◽  
Maria Fossheim ◽  
Andrey V. Dolgov ◽  
Michaela Aschan

Climate-driven poleward shifts, leading to changes in species composition and relative abundances, have been recently documented in the Arctic. Among the fastest moving species are boreal generalist fish which are expected to affect arctic marine food web structure and ecosystem functioning substantially. Here, we address structural changes at the food web level induced by poleward shifts via topological network analysis of highly resolved boreal and arctic food webs of the Barents Sea. We detected considerable differences in structural properties and link configuration between the boreal and the arctic food webs, the latter being more modular and less connected. We found that a main characteristic of the boreal fish moving poleward into the arctic region of the Barents Sea is high generalism, a property that increases connectance and reduces modularity in the arctic marine food web. Our results reveal that habitats form natural boundaries for food web modules, and that generalists play an important functional role in coupling pelagic and benthic modules. We posit that these habitat couplers have the potential to promote the transfer of energy and matter between habitats, but also the spread of pertubations, thereby changing arctic marine food web structure considerably with implications for ecosystem dynamics and functioning.

2018 ◽  
Author(s):  
Barbara Oleszczuk ◽  
Katarzyna Grzelak ◽  
Monika Kędra

Arctic marine ecosystems are currently facing sea ice decrease. Changes in the sea ice cover will influence the Organic Matter (OM) fluxes to the bottom and thus benthic communities. We aimed to examine meio- and macrobenthic biodiversity and community structure, and food web, with use of stable isotopes of carbon (δ13C) and nitrogen (δ15N), in relation to depth, sea ice type, and bloom stage. Benthic samples were collected in Svalbard area during spring time in 2015 and 2016 along with samples of particulate and sediment OM. Svalbard fjords, Storfjorden, Barents Sea shelf, continental slope, and Nansen Basin were characterized by different environmental settings including various sea ice conditions, bloom stage, sediment OM and particulate OM in bottom water. The highest biodiversity and biomass were found at the shelf and slope stations where intensive bloom was observed and was related to higher concentrations of fresh, high-quality OM. Low benthic infaunal diversity, abundance, and biomass were noted in fjords and deep stations where quality and quantity of OM was markedly lower. Deposit feeders were the only feeding guild sampled in the deep stations while at other stations 3-4 trophic levels were found.


2012 ◽  
Vol 90 (7) ◽  
pp. 903-914 ◽  
Author(s):  
C.J. Harvey ◽  
T.P. Good ◽  
S.F. Pearson

Conservation of predators presents challenges when predators affect prey populations that provide ecosystem services. Near Puget Sound, resident and overwintering populations of Bald Eagle ( Haliaeetus leucocephalus (L., 1766)) have expanded in recent decades. We modeled the potential impact of Bald Eagles on marine food-web structure. Bald Eagles caused trophic cascade dynamics through mid-level predators (seabirds) to lower trophic levels (fishes, benthic invertebrates), particularly when seabirds were more abundant in eagle diets. Resident Bald Eagles affected food-web structure more than overwintering eagles, despite the latters’ greater abundance. Predator avoidance behavior by nearshore diving birds and herbivorous birds exacerbated trophic cascade effects, but only in a narrow range of species. Variability in the number of overwintering Bald Eagles, which come to the area to feed on salmon carcasses (primarily chum salmon, Oncorhynchus keta (Walbaum in Artedi, 1792)), had little effect on the food web. Our results indicate that Bald Eagles are important to marine food-web structure, owing to their high consumption rates and the high consumption rates of their seabird prey, but uncertainty about eagle diets limits our full understanding of their impact. In systems where Bald Eagles affect large seabird breeding colonies, their role in food-web structure is likely greater.


2018 ◽  
Vol 25 (2) ◽  
pp. 404-419 ◽  
Author(s):  
Maria Bas ◽  
Ivan Briz i Godino ◽  
Myrian Álvarez ◽  
Damián G. Vales ◽  
Enrique A. Crespo ◽  
...  

Polar Biology ◽  
2016 ◽  
Vol 40 (4) ◽  
pp. 807-821 ◽  
Author(s):  
Luciana Riccialdelli ◽  
Seth D. Newsome ◽  
Marilyn L. Fogel ◽  
Daniel A. Fernández

2018 ◽  
Author(s):  
Barbara Oleszczuk ◽  
Katarzyna Grzelak ◽  
Monika Kędra

Arctic marine ecosystems are currently facing sea ice decrease. Changes in the sea ice cover will influence the Organic Matter (OM) fluxes to the bottom and thus benthic communities. We aimed to examine meio- and macrobenthic biodiversity and community structure, and food web, with use of stable isotopes of carbon (δ13C) and nitrogen (δ15N), in relation to depth, sea ice type, and bloom stage. Benthic samples were collected in Svalbard area during spring time in 2015 and 2016 along with samples of particulate and sediment OM. Svalbard fjords, Storfjorden, Barents Sea shelf, continental slope, and Nansen Basin were characterized by different environmental settings including various sea ice conditions, bloom stage, sediment OM and particulate OM in bottom water. The highest biodiversity and biomass were found at the shelf and slope stations where intensive bloom was observed and was related to higher concentrations of fresh, high-quality OM. Low benthic infaunal diversity, abundance, and biomass were noted in fjords and deep stations where quality and quantity of OM was markedly lower. Deposit feeders were the only feeding guild sampled in the deep stations while at other stations 3-4 trophic levels were found.


2009 ◽  
Vol 364 (1524) ◽  
pp. 1789-1801 ◽  
Author(s):  
Kevin Shear McCann ◽  
Neil Rooney

Here, we synthesize a number of recent empirical and theoretical papers to argue that food-web dynamics are characterized by high amounts of spatial and temporal variability and that organisms respond predictably, via behaviour, to these changing conditions. Such behavioural responses on the landscape drive a highly adaptive food-web structure in space and time. Empirical evidence suggests that underlying attributes of food webs are potentially scale-invariant such that food webs are characterized by hump-shaped trophic structures with fast and slow pathways that repeat at different resolutions within the food web. We place these empirical patterns within the context of recent food-web theory to show that adaptable food-web structure confers stability to an assemblage of interacting organisms in a variable world. Finally, we show that recent food-web analyses agree with two of the major predictions of this theory. We argue that the next major frontier in food-web theory and applied food-web ecology must consider the influence of variability on food-web structure.


Genome ◽  
2016 ◽  
Vol 59 (9) ◽  
pp. 603-628 ◽  
Author(s):  
Tomas Roslin ◽  
Sanna Majaneva

By depicting who eats whom, food webs offer descriptions of how groupings in nature (typically species or populations) are linked to each other. For asking questions on how food webs are built and work, we need descriptions of food webs at different levels of resolution. DNA techniques provide opportunities for highly resolved webs. In this paper, we offer an exposé of how DNA-based techniques, and DNA barcodes in particular, have recently been used to construct food web structure in both terrestrial and aquatic systems. We highlight how such techniques can be applied to simultaneously improve the taxonomic resolution of the nodes of the web (i.e., the species), and the links between them (i.e., who eats whom). We end by proposing how DNA barcodes and DNA information may allow new approaches to the construction of larger interaction webs, and overcome some hurdles to achieving adequate sample size. Most importantly, we propose that the joint adoption and development of these techniques may serve to unite approaches to food web studies in aquatic and terrestrial systems—revealing the extent to which food webs in these environments are structured similarly to or differently from each other, and how they are linked by dispersal.


2015 ◽  
Author(s):  
Abigail Z. Jacobs ◽  
Jennifer A. Dunne ◽  
Cristopher Moore ◽  
Aaron Clauset

Food webs represent the set of consumer-resource interactions among a set of species that co-occur in a habitat, but most food web studies have omitted parasites and their interactions. Recent studies have provided conflicting evidence on whether including parasites changes food web structure, with some suggesting that parasitic interactions are structurally distinct from those among free-living species while others claim the opposite. Here, we describe a principled method for understanding food web structure that combines an efficient optimization algorithm from statistical physics called parallel tempering with a probabilistic generalization of the empirically well-supported food web niche model. This generative model approach allows us to rigorously estimate the degree to which interactions that involve parasites are statistically distinguishable from interactions among free-living species, whether parasite niches behave similarly to free-living niches, and the degree to which existing hypotheses about food web structure are naturally recovered. We apply this method to the well-studied Flensburg Fjord food web and show that while predation on parasites, concomitant predation of parasites, and parasitic intraguild trophic interactions are largely indistinguishable from free-living predation interactions, parasite-host interactions are different. These results provide a powerful new tool for evaluating the impact of classes of species and interactions on food web structure to shed new light on the roles of parasites in food webs.


Sign in / Sign up

Export Citation Format

Share Document