Analytical chemical applications of high-resolution nuclear magnetic resonance spectroscopy of solids

The basis of the combined cross-polarization-magic-angle spinning (c.p.-m.a.s.) experiment, which yields high-resolution n.m.r. spectra of solid materials, is described and the general applicability of the technique, including its quantitative reliability, discussed. Solid-state n.m.r. is in many ways complementary to X-ray diffraction, as shown by its application to amorphous systems in which diffraction methods cannot be used (for example resins, coals, glasses and surface-immobilized catalysts) and also by its application to crystalline materials where X-ray structural data are available but where, for various reasons, a fuller description of the structure may be obtained by n.m.r. Examples include zeolites and chemically exchanging solid systems. The technique also provides a bridge between the solid-state structures of conformationally mobile and charged species as determined by diffraction techniques and the structures of these species in solution. Quantitative reliability of the c.p.-m.a.s. technique has been evaluated for phenolic resins and coals.

2021 ◽  
Vol 2 (1) ◽  
pp. 39-48
Author(s):  
Nguyen H. H. Phuc ◽  
Takaki Maeda ◽  
Tokoharu Yamamoto ◽  
Hiroyuki Muto ◽  
Atsunori Matsuda

A solid solution of a 100Li3PS4·xLi3PO4 solid electrolyte was easily prepared by liquid-phase synthesis. Instead of the conventional solid-state synthesis methods, ethyl propionate was used as the reaction medium. The initial stage of the reaction among Li2S, P2S5 and Li3PO4 was proved by ultraviolet-visible spectroscopy. The powder X-ray diffraction (XRD) results showed that the solid solution was formed up to x = 6. At x = 20, XRD peaks of Li3PO4 were detected in the prepared sample after heat treatment at 170 °C. However, the samples obtained at room temperature showed no evidence of Li3PO4 remaining for x = 20. Solid phosphorus-31 magic angle spinning nuclear magnetic resonance spectroscopy results proved the formation of a POS33− unit in the sample with x = 6. Improvements of ionic conductivity at room temperature and activation energy were obtained with the formation of the solid solution. The sample with x = 6 exhibited a better stability against Li metal than that with x = 0. The all-solid-state half-cell employing the sample with x = 6 at the positive electrode exhibited a better charge–discharge capacity than that employing the sample with x = 0.


2016 ◽  
Vol 18 (6) ◽  
pp. 4902-4910 ◽  
Author(s):  
J. Ole Brauckmann ◽  
J. W. G. (Hans) Janssen ◽  
Arno P. M. Kentgens

To be able to study mass-limited samples and small single crystals, a triple resonance micro-magic angle spinning (μMAS) probehead for the application of high-resolution solid-state NMR of nanoliter samples was developed.


Sign in / Sign up

Export Citation Format

Share Document