Immobilization of high-level waste in ceramic waste forms

High-level wastes (HLW) can be incorporated in the crystal lattices of coexisting phases in ceramic waste forms. The properties and performances of ceramic waste forms are largely determined by their phase chemistry, phase assemblage and microstructure. Currently, the best categorized advanced ceramic waste form is SYNROC, a titanate ceramic composed of ‘ hollandite ’ Bat 1(Al,Ti)2^Ti|]*"70 16, zirconolite CaZrTi 2 O 7 , perovskite CaTiO 3 , rutile TiO 2 and minor amounts of metal alloys microencapsulated by the titanate matrix. Two factors contribute to the capacity of synroc to accommodate high (e.g. 20% ) loadings of HLW, together with variations in waste-stream composition. Firstly, the constituent phases can accept, as solid solutions in their crystal lattices, a broad spectrum of cationic species of diverse charge and radius, either singly or by complex substitution mechanisms. Secondly, the phase assemblage itself spontaneously adjusts its modal mineralogy in response to waste stream fluctuations. The presence of both rutile and a source of trivalent titanium (from reaction of rutile with added Ti metal) in the synroc phase assemblage is largely responsible for this flexible and accommodating nature. The titanate minerals in synroc also occur in Nature, where they have survived for many millions of years in a wide range of geological environments. Experimental studies show that synroc is vastly more resistant to leaching by groundwater than borosilicate glass; moreover, its high leach resistance is maintained at elevated temperatures. Experimental and analogue studies indicate that the HLW immobilization properties of synroc are not significantly impaired by radiation damage. These properties show that synroc would provide an effective immobilization barrier for HLW when buried in suitable repositories. They also permit the use of a wider range of geological disposal options than are appropriate for borosilicate glass. In particular, synroc is well suited for disposal in deep drill-holes, both in continental and marine environments. The fact that synroc is composed of minerals that have demonstrated long-term geological stability is important in establishing public confidence in the ability of the nuclear industry to immobilize high-level wastes for the very long periods required.

1986 ◽  
Vol 73 (2) ◽  
pp. 139-139
Author(s):  
Edward J. Hennelly ◽  
E. I. Du Pont de Nemours

1985 ◽  
Vol 49 (351) ◽  
pp. 159-176 ◽  
Author(s):  
A. E. Ringwood

AbstractMost countries intend to dispose of their high-level radioactive wastes by converting them into a solidified wasteform which is to be buried within the earth. SYNROC is a titanate ceramic wasteform which has been designed for this purpose on the basis of geochemical principles. It comprises essentially rutile TiO2, ‘hollandite’ Ba(Al,Ti)Ti6O16, zirconolite CaZrTi2O7, and perovskite CaTiO3. The latter three phases have the capacity to accept the great majority of radioactive elements occurring in high-level wastes into their crystal lattice sites. These minerals (or their close relatives) also occur in nature, where they have demonstrated their capacity to survive for many millions of years in a wide range of geological environments. The properties of SYNROC and the crystal chemistry of its constituent minerals are reviewed in some detail and current formulations of SYNROC are summarized. A notable property of SYNROC it its extremely high resistance to leaching by groundwaters, particularly above 100°C. In addition, it can be shown that the capacity of SYNROC minerals to immobilize high-level waste elements is not markedly impaired by high levels of radiation damage. Current investigations are focused on developing a satisfactory production technology for SYNROC and progress towards this objective is described. The high leach resistance of SYNROC at elevated temperatures increases the range of geological environments in which the waste may be finally interred; in particular, SYNROC is well adapted for disposal in deep drill-holes, both in continental and marine environments. The fact that SYNROC is comprised of minerals which have demonstrated long-term geological stability is significant in establishing public confidence in the ability of the nuclear industry to immobilize high-level wastes for the very long periods required.


1996 ◽  
Vol 465 ◽  
Author(s):  
T. P. O'Holleran ◽  
S. G. Johnson ◽  
S. M. Frank ◽  
M. K. Meyer ◽  
M. Noy ◽  
...  

ABSTRACTResults are reported on several new glass and glass-ceramic waste formulations for plutonium disposition. The approach proposed involves employing existing calcined high level waste (HLW) present at the Idaho Chemical Processing Plant (ICPP) as an additive to: 1) aid in the formation of a durable waste form and 2) decrease the attractiveness level of the plutonium from a proliferation viewpoint. The plutonium, PuO2, loadings employed were 15 wt% (glass) and 17 wt% (glass-ceramic). Results in the form of x-ray diffraction patterns, microstructure and durability tests are presented on cerium surrogate and plutonium loaded waste forms using simulated calcined HLW and demonstrate that durable phases, zirconia and zirconolite, contain essentially all the plutonium.


2006 ◽  
Vol 932 ◽  
Author(s):  
Tatiana S. Yudintseva

ABSTRACTBritholite, Ca-REE silicate with apatite structure, is an actinide host phase occurred in vitreous borosilicate waste forms. Such glass-ceramics are considered as potential host phases for immobilization of actinide-containing high-level waste. Crystalline phases have to be radiation resistant for this application. Radiation stability of the britholites was mainly studied by either heavy ions irradiation or incorporation of Cm-244 or Pu-238 and 240. A wide range of critical doses (0.15 - 0.6 dpa at 25°C) and temperatures have been obtained depending on the compositions of the samples. Natural analogue study of the waste forms allows to predict the behavior of actinide host phases for long periods after disposal. Britholites with age from 320 to 2600 millions years, ThO2+UO2 content from 1.0 to 12 wt.%, and cumulative doses from 0.6×1019 to 7.7×1019 α-decays/g have been studied. The britholite becomes amorphous at a dose of 1 dpa (0.9×1019 α-decays/g) and higher. Critical doses for natural minerals are higher than those for synthetic samples, most likely due to re-crystallization during annealing.


Sign in / Sign up

Export Citation Format

Share Document