The environment and evolution of the West Antarctic ice sheet: setting the stage

Author(s):  
Robert Bindschadler

The West Antarctic ice sheet is the last ice sheet of the type cradled in a warm, marine geologic basin. Its perimeter stretches into the surrounding seas allowing warmer ocean waters to reach the undersides of its floating ice shelves and its relatively low surface elevation permits snow-carrying storms to extend well into its interior. This special environment has given rise to theories of impending collapse and for the past quarter-century has challenged researchers who seek a quantitative prediction of its future behaviour and the corresponding effect on sea level. Observations confirm changes on a variety of time scales from the quaternary to less than a minute. The dynamics of the ice sheet involve the complex interaction of ice that is warm at its base and cold along the margins of ice streams; subglacial till that is composed of a combination of marine sediment and eroded sedimentary rocks; and water that moves primarily between the ice and bed, but whose flow direction can differ from the direction of ice motion. The pressure of the water system is often sufficient to float the ice sheet locally and small changes in the amount of water in the till can cause it to rapidly switch from very weak to very stiff.

2014 ◽  
Vol 26 (6) ◽  
pp. 674-686 ◽  
Author(s):  
C.J. Fogwill ◽  
C.S.M. Turney ◽  
N.R. Golledge ◽  
D.H. Rood ◽  
K. Hippe ◽  
...  

AbstractDetermining the millennial-scale behaviour of marine-based sectors of the West Antarctic Ice Sheet (WAIS) is critical to improve predictions of the future contribution of Antarctica to sea level rise. Here high-resolution ice sheet modelling was combined with new terrestrial geological constraints (in situ14C and 10Be analysis) to reconstruct the evolution of two major ice streams entering the Weddell Sea over 20 000 years. The results demonstrate how marked differences in ice flux at the marine margin of the expanded Antarctic ice sheet led to a major reorganization of ice streams in the Weddell Sea during the last deglaciation, resulting in the eastward migration of the Institute Ice Stream, triggering a significant regional change in ice sheet mass balance during the early to mid Holocene. The findings highlight how spatial variability in ice flow can cause marked changes in the pattern, flux and flow direction of ice streams on millennial timescales in this marine ice sheet setting. Given that this sector of the WAIS is assumed to be sensitive to ocean-forced instability and may be influenced by predicted twenty-first century ocean warming, our ability to model and predict abrupt and extensive ice stream diversions is key to a realistic assessment of future ice sheet sensitivity.


1997 ◽  
Vol 24 ◽  
pp. 409-414 ◽  
Author(s):  
Robert Bindschadler

Ice Streams B, D and E, West Antarctica, all show a longitudinal pattern of ice thickness change that is consistent with ongoing surge behavior modeled for glaciers. The measured pattern is not consistent with model response of any other scenario such as accumulation-rate change or changes on the ice shelf. Inland migration of the ice-stream onset is a requirement of this behavior pattern. If such a surge is presently taking place, the remaining lifetime of the West Antarctic ice sheet is 1200–6000 years. A complete surge period lasting 50 000–120 000 years is hypothesized, with a relatively brief surge phase (lasting 16000–21 000 years) required to completely remove the West Antarctic ice sheet from its maximum extent. Applying classic glacier response theory demonstrates that the diffusive component of response is much faster for ice streams than for glaciers, making the identification of either kinematic waves or localized responses on ice streams unlikely.


1978 ◽  
Vol 10 (2) ◽  
pp. 150-170 ◽  
Author(s):  
Robert H. Thomas ◽  
Charles R. Bentley

Marine ice sheets are grounded on land which was below sea level before it became depressed under the ice-sheet load. They are inherently unstable and, because of bedrock topography after depression, the collapse of a marine ice sheet may be very rapid. In this paper equations are derived that can be used to make a quantitative estimate of the maximum size of a marine ice sheet and of when and how rapidly retreat would take place under prescribed conditions. Ice-sheet growth is favored by falling sea level and uplift of the seabed. In most cases the buttressing effect of a partially grounded ice shelf is a prerequisite for maximum growth out to the edge of the continental shelf. Collapse is triggered most easily by eustatic rise in sea level, but it is possible that the ice sheet may self-destruct by depressing the edge of the continental shelf so that sea depth is increased at the equilibrium grounding line.Application of the equations to a hypothetical “Ross Ice Sheet” that 18,000 yr ago may have covered the present-day Ross Ice Shelf indicates that, if the ice sheet existed, it probably extended to a line of sills parallel to the edge of the Ross Sea continental shelf. By allowing world sea level to rise from its late-Wisconsin minimum it was possible to calculate retreat rates for individual ice streams that drained the “Ross Ice Sheet.” For all the models tested, retreat began soon after sea level began to rise (∼15,000 yr B.P.). The first 100 km of retreat took between 1500 and 2500 yr but then retreat rates rapidly accelerated to between 0.5 and 25 km yr−1, depending on whether an ice shelf was present or not, with corresponding ice velocities across the grounding line of 4 to 70 km yr−1. All models indicate that most of the present-day Ross Ice Shelf was free of grounded ice by about 7000 yr B.P. As the ice streams retreated floating ice shelves may have formed between promontories of slowly collapsing stagnant ice left behind by the rapidly retreating ice streams. If ice shelves did not form during retreat then the analysis indicates that most of the West Antarctic Ice Sheet would have collapsed by 9000 yr B.P. Thus, the present-day Ross Ice Shelf (and probably the Ronne Ice Shelf) serves to stabilize the West Antarctic Ice Sheet, which would collapse very rapidly if the ice shelves were removed. This provides support for the suggestion that the 6-m sea-level high during the Sangamon Interglacial was caused by collapse of the West Antarctic Ice Sheet after climatic warming had sufficiently weakened the ice shelves. Since the West Antarctic Ice Sheet still exists it seems likely that ice shelves did form during Holocene retreat. Their effect was to slow and, finally, to halt retreat. The models that best fit available data require a rather low shear stress between the ice shelf and its sides, and this implies that rapid shear in this region encouraged the formation of a band of ice with a preferred crystal fabric, as appears to be happening today in the floating portions of fast bounded glaciers.Rebound of the seabed after the ice sheet had retreated to an equilibrium position would allow the ice sheet to advance once more. This may be taking place today since analysis of data from the Ross Ice Shelf indicates that the southeast corner is probably growing thicker with time, and if this persists then large areas of ice shelf must become grounded. This would restrict drainage from West Antarctic ice streams which would tend to thicken and advance their grounding lines into the ice shelf.


2004 ◽  
Vol 39 ◽  
pp. 85-92 ◽  
Author(s):  
Hermann Engelhardt

AbstractThe temperature–depth profiles measured in 22 boreholes drilled on the West Antarctic ice sheet exhibit two distinctly different thermal states of its basal ice. The warm state shows on Siple Dome and on Whillans Ice Stream. A relatively colder state, found at the Unicorn, Kamb Ice Stream (former Ice Stream C) and Bindschadler Ice Stream (former Ice Stream D), has basal temperature gradients greater than 50 K km–1. A large block of cold ice stranded and frozen to the bed at the Unicorn and simultaneously much warmer ice existing only a few kilometers across the Dragon shear margin in fast-moving Alley Ice Stream (former Ice Stream B2) poses a paradox. The relatively cold ice at the Unicorn must have come from a source different from the present Whillans Ice Stream catchment area. It is hypothesized that the Unicorn paradox was created by a super-surge. Also, the stagnant Siple Ice Stream, many relict shear margins, cold patches of ice at the Crary Ice Rise, ice rafts embedded in the Ross Ice Shelf, all point to a major event triggered either by an internal instability or by a subareal volcanic eruption. Most of these features appeared to have been formed about 500 years ago. Subsequent freeze-on of a 10–20m thick basal layer of debris-laden ice and water loss caused a slowdown of ice streams and, in the case of Kamb Ice Stream, an almost complete stoppage.


2011 ◽  
Vol 75 (3) ◽  
pp. 417-429 ◽  
Author(s):  
Katherine Pingree ◽  
Max Lurie ◽  
Terence Hughes

AbstractThe Greenland and East and West Antarctic ice sheets are assessed as being the source of ice that produced an Eemian sea level 6 m higher than present sea level. The most probable source is total collapse of the West Antarctic Ice Sheet accompanied by partial collapse of the adjacent sector of the East Antarctic Ice Sheet in direct contact with the West Antarctic Ice Sheet. This conclusion is reached by applying a simple formula relating the “floating fraction” of ice along flowlines to ice height above the bed. Increasing the floating fraction lowered ice elevations enough to contribute up to 4.7 m to global sea level. Adding 3.3 m resulting from total collapse of the West Antarctic Ice Sheet accounts for the higher Eemian sea level. Partial gravitational collapse that produced the present ice drainage system of Amery Ice Shelf contributes 2.3 m to global sea level. These results cast doubt on the presumed stability of the East Antarctic Ice Sheet, but destabilizing mechanisms remain largely unknown. Possibilities include glacial surges and marine instabilities at the respective head and foot of ice streams.


2003 ◽  
Vol 36 ◽  
pp. 273-282 ◽  
Author(s):  
Stefan W. Vogel ◽  
Slawek Tulaczyk ◽  
Ian R. Joughin

AbstractIce-stream tributaries connect the relatively slow-moving interior of the West Antarctic ice sheet (WAIS) with the fast-flowing Siple Coast ice streams. Basal water underneath these ice streams reduces basal resistance and enables the fast motion of the ice. Basal melting being the only source for this water, it is important to include the distribution of basal melting and freezing into numerical models assessing the stability of the WAIS. However, it is very difficult to constrain its distribution from existing field observations. Past borehole observations confirmed the presence of a wet bed at Byrd Station in the WAIS interior and at different locations within Siple Coast ice streams. However, the recent discovery of a 12–25m thick sediment-laden bubble-free basal ice layer at the UpC boreholes indicates that basal freezing is either currently occurring or had occurred upstream during the last glacial–interglacialcycle.We use a flowline model of ice thermodynamics to assess and quantify the spatial and temporal distribution of basal melting and freezing beneath Ice Stream C tributaries, taking into account the geothermal flux, shear heating and heat conduction away from the bed. Under the assumption that the ice was moving over a weak bed (τb =1–10 kPa) our model is able to reproduce a layer of frozen-on ice similar in thickness to the UpC “sticky spot” basal ice layer. Increased basal melting in the early Holocene possibly could have initiated the Holocene decay of the WAIS, whereas increased freezing rates over the past few thousand years could have decreased the amount of basal water in the system, resulting in a strengthening of the bed. This is consistent with current force-budget calculations for ice-stream tributaries and with observed stoppages and slow-downs of ice streams.


1997 ◽  
Vol 24 ◽  
pp. 409-414 ◽  
Author(s):  
Robert Bindschadler

Ice Streams B, D and E, West Antarctica, all show a longitudinal pattern of ice thickness change that is consistent with ongoing surge behavior modeled for glaciers. The measured pattern is not consistent with model response of any other scenario such as accumulation-rate change or changes on the ice shelf. Inland migration of the ice-stream onset is a requirement of this behavior pattern. If such a surge is presently taking place, the remaining lifetime of the West Antarctic ice sheet is 1200–6000 years. A complete surge period lasting 50 000–120 000 years is hypothesized, with a relatively brief surge phase (lasting 16000–21 000 years) required to completely remove the West Antarctic ice sheet from its maximum extent. Applying classic glacier response theory demonstrates that the diffusive component of response is much faster for ice streams than for glaciers, making the identification of either kinematic waves or localized responses on ice streams unlikely.


Geology ◽  
2012 ◽  
Vol 41 (1) ◽  
pp. 35-38 ◽  
Author(s):  
C.-D. Hillenbrand ◽  
G. Kuhn ◽  
J. A. Smith ◽  
K. Gohl ◽  
A. G. C. Graham ◽  
...  

2001 ◽  
Vol 47 (157) ◽  
pp. 271-282 ◽  
Author(s):  
Richard C.A. Hindmarsh ◽  
E. Le Meur

AbstractMarine ice sheets with mechanics described by the shallow-ice approximation by definition do not couple mechanically with the shelf. Such ice sheets are known to have neutral equilibria. We consider the implications of this for their dynamics and in particular for mechanisms which promote marine ice-sheet retreat. The removal of ice-shelf buttressing leading to enhanced flow in grounded ice is discounted as a significant influence on mechanical grounds. Sea-level rise leading to reduced effective pressures under ice streams is shown to be a feasible mechanism for producing postglacial West Antarctic ice-sheet retreat but is inconsistent with borehole evidence. Warming thins the ice sheet by reducing the average viscosity but does not lead to grounding-line retreat. Internal oscillations either specified or generated via a MacAyeal–Payne thermal mechanism promote migration. This is a noise-induced drift phenomenon stemming from the neutral equilibrium property of marine ice sheets. This migration occurs at quite slow rates, but these are sufficiently large to have possibly played a role in the dynamics of the West Antarctic ice sheet after the glacial maximum. Numerical experiments suggest that it is generally true that while significant changes in thickness can be caused by spatially uniform changes, spatial variability coupled with dynamical variability is needed to cause margin movement.


Sign in / Sign up

Export Citation Format

Share Document