Thermodynamics of surface degradation, self-organization and self-healing for biomimetic surfaces

Author(s):  
Michael Nosonovsky ◽  
Bharat Bhushan

Friction is a dissipative irreversible process; therefore, entropy is produced during frictional contact. The rate of entropy production can serve as a measure of degradation (e.g. wear). However, in many cases friction leads to self-organization at the surface. This is because the excess entropy is either driven away from the surface, or it is released at the nanoscale, while the mesoscale entropy decreases. As a result, the orderliness at the surface grows. Self-organization leads to surface secondary structures either due to the mutual adjustment of the contacting surfaces (e.g. by wear) or due to the formation of regular deformation patterns, such as friction-induced slip waves caused by dynamic instabilities. The effect has practical applications, since self-organization is usually beneficial because it leads to friction and wear reduction (minimum entropy production rate at the self-organized state). Self-organization is common in biological systems, including self-healing and self-cleaning surfaces. Therefore, designing a successful biomimetic surface requires an understanding of the thermodynamics of frictional self-organization. We suggest a multiscale decomposition of entropy and formulate a thermodynamic framework for irreversible degradation and for self-organization during friction. The criteria for self-organization due to dynamic instabilities are discussed, as well as the principles of biomimetic self-cleaning, self-lubricating and self-repairing surfaces by encapsulation and micro/nanopatterning.

Author(s):  
S.V. Ulyanov ◽  
◽  
K. Yamafuji ◽  
V.S. Ulyanov ◽  
I. Kurawaki ◽  
...  

Our thermodynamic approach to the study and design of robust optimal control processes in nonlinear (in general global unstable) dynamic systems used soft computing based on genetic algorithms with a fitness function as minimum entropy production. Control objects were nonlinear dynamic systems involving essentially nonlinear stochastic differential equations. An algorithm was developed for calculating entropy production rate in control object motion and in control systems. Part 1 discusses relation of the Lyapunov function (measure of stability) and the entropy production rate (physical measure of controllability). This relation was used to describe the following qualitative properties and important relations: dynamic stability motion (Lyapunov function), Lyapunov exponent and Kolmogorov-Sinai entropy, physical entropy production rates, and symmetries group representation in essentially nonlinear systems as coupled oscillator models. Results of computer simulation are presented for entropy-like dynamic behavior for typical benchmarks of dynamic systems such as Van der Pol, Duffing, and Holmes-Rand, and coupled oscillators. Parts 2 and 3 discuss the application of this approach to simulation of dynamic entropy-like behavior and optimal benchmark control as a 2-link manipulator in a robot for service use and nonlinear systems under stochastic excitation.


1964 ◽  
Vol 42 (8) ◽  
pp. 1437-1446 ◽  
Author(s):  
J. S. Kirkaldy

The stable free-fall flight of a maple seed gives an exceptionally graphic demonstration of the principle of minimum entropy production. Since the rate of entropy production is proportional to the steady-state rate of loss of potential energy, it is visually obvious that the stable rotary configuration represents a minimum of the entropy production rate relative to an unstable steady-state bomblike trajectory. Regarding this phenomenon as the prototype of many practical steady-state fluid-dynamical systems involving rotational modes, we formally demonstrate the possibility of mathematically defining the stable steady-state configuration by means of this variational principle.


Author(s):  
Jiangfeng Guo ◽  
Mingtian Xu ◽  
Lin Cheng

The principle of minimum entropy production has played an important role in the development of non-equilibrium thermodynamics. Inspired by this principle, Bejan derived the expression of the local entropy production rate for heat convection and established the entropy production minimization approach for the heat exchanger optimization design. Although one can obtain the entropy production distribution in the heat exchanger numerically, it can not directly been employed to examine the heat exchanger performance. Tondeur and Kvaalen found that the entropy production uniformity is closely related to the heat exchanger performance. In the present work, based on Tondear and Kvaalen’s work, an entropy production uniformity factor is defined, which quantifies the uniformity of the local entropy generation distribution in heat exchanger. Numerical results of the heat transfer in a rectangular channel show that the larger entropy production uniformity factor implies less irreversible loses. Therefore, this factor can serve as a thermodynamic figure of merit for assessing the heat exchanger performance.


2009 ◽  
Vol 5 (3) ◽  
pp. 753-783
Author(s):  
Piero Chiarelli

In this work an extremal principle driving the far from equilibrium evolution of a system of structureless particles is derived by using the stochastic quantum hydrodynamic analogy. For a classical phase (i.e., the quantum correlations decay on a distance smaller than the mean inter-molecular distance) the far from equilibrium kinetic equation can be cast in the form of a Fokker-Plank equation whose phase space velocity vector maximizes the dissipation of the energy-type function, named here, stochastic free energy.Near equilibrium the maximum stochastic free energy dissipation (SFED) is shown to be compatible with the Prigogine’s principle of minimum entropy production. Moreover, in quasi-isothermal far from equilibrium states, the theory shows that, in the case of elastic molecular collisions and in absence of chemical reactions, the maximum SFED reduces to the maximum free energy dissipation.When chemical reactions or relevant thermal gradients are present, the theory highlights that the Sawada enunciation of maximum free energy dissipation can be violated.The proposed model depicts the Prigogine’s principle of minimum entropy production near-equilibrium and the far from equilibrium Sawada’s principle of maximum energy dissipation as two complementary principia of a unique theory where the latter one is a particular case of the more general one of maximum stochastic free energy dissipation.Following the tendency to reach the highest rate of SFED, a system relaxing to equilibrium goes through states with higher order so that the matter self-organization becomes possible.


Author(s):  
V.S. Ulyanov ◽  
◽  
K. Yamafuji ◽  
S.V. Ulyanov ◽  
K. Tanaka ◽  
...  

The biomechanical robotic unicycle system uses internal world representation described by emotion, instinct, and intuition. The basic intelligent control concept for a complex nonlinear nonholonomic biomechanical systems, as benchmark the <I>extension-cableless robotic unicycle,</I> uses a <I>thermodynamic approach</I> to study optimum control processes in complex nonlinear dynamic systems is represented here. An algorithm for calculating the entropy production rate is developed. A new physical measure, the minimum entropy production rate, is used as a Genetic Algorithm (GA) fitness function to calculate robotic unicycle robustness controllability and intelligent behavior. The interrelation between the Lyapunov function - a measure of stochastic stability - and the entropy production rate - the physical measure of controllability - in the biomechanical model is the mathematical background for designing soft computing algorithms in intelligent robotic unicycle control. The principle of minimum entropy production rate in control systems and control object motion in general is a new physical concept of smart robust control for the complex nonlinear nonholonomic biomechanical system, as benchmark, <I>extension-cableless robotic unicycle.</I>


Sign in / Sign up

Export Citation Format

Share Document