scholarly journals Rate sensitivity and tension–compression asymmetry in AZ31B magnesium alloy sheet

Author(s):  
Srihari Kurukuri ◽  
Michael J. Worswick ◽  
Dariush Ghaffari Tari ◽  
Raja K. Mishra ◽  
Jon T. Carter

The constitutive response of a commercial magnesium alloy rolled sheet (AZ31B-O) is studied based on room temperature tensile and compressive tests at strain rates ranging from 10 −3 to 10 3  s −1 . Because of its strong basal texture, this alloy exhibits a significant tension–compression asymmetry (strength differential) that is manifest further in terms of rather different strain rate sensitivity under tensile versus compressive loading. Under tensile loading, this alloy exhibits conventional positive strain rate sensitivity. Under compressive loading, the flow stress is initially rate insensitive until twinning is exhausted after which slip processes are activated, and conventional rate sensitivity is recovered. The material exhibits rather mild in-plane anisotropy in terms of strength, but strong transverse anisotropy ( r -value), and a high degree of variation in the measured r -values along the different sheet orientations which is indicative of a higher degree of anisotropy than that observed based solely upon the variation in stresses. This rather complex behaviour is attributed to the strong basal texture, and the different deformation mechanisms being activated as the orientation and sign of applied loading are varied. A new constitutive equation is proposed to model the measured compressive behaviour that captures the rate sensitivity of the sigmoidal stress–strain response. The measured tensile stress–strain response is fit to the Zerilli–Armstrong hcp material model.

2015 ◽  
Vol 719-720 ◽  
pp. 87-90
Author(s):  
Muneer Baig ◽  
Hany Rizk Ammar ◽  
Asiful Hossain Seikh ◽  
Mohammad Asif Alam ◽  
Jabair Ali Mohammed

In this investigation, bulk ultra-fine grained and nanocrystalline Al-2 wt.% Fe alloy was produced by mechanical alloying (MA). The powder was mechanically milled in an attritor for 3 hours and yielded an average crystal size of ~63 nm. The consolidation and sintering was performed using a high frequency induction sintering (HFIS) machine at a constant pressure of 50 MPa. The prepared bulk samples were subjected to uniaxial compressive loading over wide range of strain rates for large deformation. To evaluate the effect of sintering conditions and testing temperature on the strain rate sensitivity, strain rate jump experiments were performed at high temperature. The strain rate sensitivity of the processed alloy increased with an increase in temperature. The density of the bulk samples were found to be between 95 to 97%. The average Vickers micro hardness was found to be 132 Hv0.1.


2010 ◽  
Vol 163-167 ◽  
pp. 4590-4594
Author(s):  
Shao Wei Hu

Discontinuous yield of material as Jerky flow was explained. Then, the strain rate sensitivity (SRS) and instability criterion was given out. Some tests were carried out at constant stress rate, so Jerky flow is manifested as a discontinuity in the stress-strain curves in form of strain bursts. Finally, the dynamic behaviors of specimens during instability of thermal origin were simulated with COLSYS software, whose results are good with test ones.


2015 ◽  
Vol 94 ◽  
pp. 44-47 ◽  
Author(s):  
In-Chul Choi ◽  
Dong-Hyun Lee ◽  
Byungmin Ahn ◽  
Karsten Durst ◽  
Megumi Kawasaki ◽  
...  

2013 ◽  
Vol 589-590 ◽  
pp. 45-51 ◽  
Author(s):  
Li Na Zhang ◽  
Peng Nan Li ◽  
Si Wen Tang ◽  
Wen Bo Tang ◽  
Shuai Zhang

The stress-strain curves, mechanical behaviors, and Johnson-Cook model of 4Cr13 stainless steel were investigated at both the strain rates from 0.001s-1 to 7000s-1 and the temperatures from 293K to 673K based on the electronic universal testing machine and the split Hopkinson bar. The results showed that 4Cr13 stainless steel was very sensitive to the temperature and the strain rate. The temperature sensitivity factor decreased with increasing the temperature, and the strain rate sensitivity factor increased with increasing the strain rate. Both the temperature sensitivity factor and strain rate sensitivity factor decreased with increasing strain. The flow stress increased with strain rate and strain, but decreased with temperature. The J-C model prediction had a good agreement with the experimental stress-strain in the wide range of temperatures and strain rates. The Johnson-Cook model gave the foundation for finite element analysis during the cutting process.


2013 ◽  
Vol 49 ◽  
pp. 173-180 ◽  
Author(s):  
E. Karimi ◽  
A. Zarei-Hanzaki ◽  
M.H. Pishbin ◽  
H.R. Abedi ◽  
P. Changizian

1996 ◽  
Vol 82 (10) ◽  
pp. 876-880
Author(s):  
Hideaki MORIYA ◽  
Kotobu NAGAI ◽  
Yoshikuni KAWABE ◽  
Atsumasa OKADA

Sign in / Sign up

Export Citation Format

Share Document