Tension–Compression Asymmetry of Commercially Pure Titanium: Strain Rate Sensitivity and Microstructure Evolution

JOM ◽  
2019 ◽  
Vol 71 (7) ◽  
pp. 2280-2290
Author(s):  
Jiahui Tao ◽  
Boqin Gu ◽  
Lili Chen ◽  
Jianfeng Zhou
1986 ◽  
Vol 72 (2) ◽  
pp. 321-328 ◽  
Author(s):  
Takehide SENUMA ◽  
Hiroshi YADA ◽  
Hirobumi YOSHIMURA ◽  
Hisaaki HARADA ◽  
Takuji SHINDO ◽  
...  

2013 ◽  
Vol 753 ◽  
pp. 289-292
Author(s):  
Mariusz Jedrychowski ◽  
Jacek Tarasiuk ◽  
Brigitte Bacroix

EBSD investigation of texture and microstructure evolution during a complete thermomechanical treatment of commercially pure titanium (HCP-Ti) is presented. Titanium was cold rolled to reach various degrees of thickness reduction: 20%, 40% and 60%. Next, annealing in air atmosphere was conducted at different conditions to achieve the recrystallized state. EBSD topological maps were measured on RD-TD and RD-ND surface of each sample. Strong heterogeneity of deformed titanium microstructures is described with focus on the important role of twinning mechanisms. Texture evolution in investigated titanium appears to be limited, especially in recrystallized state. However some subtle mechanisms are discussed.


Vacuum ◽  
2014 ◽  
Vol 110 ◽  
pp. 202-206 ◽  
Author(s):  
Okan Unal ◽  
A. Cahit Karaoglanli ◽  
Remzi Varol ◽  
Akira Kobayashi

2012 ◽  
Vol 60 (9) ◽  
pp. 3849-3860 ◽  
Author(s):  
Dongdong Gu ◽  
Yves-Christian Hagedorn ◽  
Wilhelm Meiners ◽  
Guangbin Meng ◽  
Rui João Santos Batista ◽  
...  

Author(s):  
Srihari Kurukuri ◽  
Michael J. Worswick ◽  
Dariush Ghaffari Tari ◽  
Raja K. Mishra ◽  
Jon T. Carter

The constitutive response of a commercial magnesium alloy rolled sheet (AZ31B-O) is studied based on room temperature tensile and compressive tests at strain rates ranging from 10 −3 to 10 3  s −1 . Because of its strong basal texture, this alloy exhibits a significant tension–compression asymmetry (strength differential) that is manifest further in terms of rather different strain rate sensitivity under tensile versus compressive loading. Under tensile loading, this alloy exhibits conventional positive strain rate sensitivity. Under compressive loading, the flow stress is initially rate insensitive until twinning is exhausted after which slip processes are activated, and conventional rate sensitivity is recovered. The material exhibits rather mild in-plane anisotropy in terms of strength, but strong transverse anisotropy ( r -value), and a high degree of variation in the measured r -values along the different sheet orientations which is indicative of a higher degree of anisotropy than that observed based solely upon the variation in stresses. This rather complex behaviour is attributed to the strong basal texture, and the different deformation mechanisms being activated as the orientation and sign of applied loading are varied. A new constitutive equation is proposed to model the measured compressive behaviour that captures the rate sensitivity of the sigmoidal stress–strain response. The measured tensile stress–strain response is fit to the Zerilli–Armstrong hcp material model.


Sign in / Sign up

Export Citation Format

Share Document