shear yield
Recently Published Documents


TOTAL DOCUMENTS

131
(FIVE YEARS 32)

H-INDEX

17
(FIVE YEARS 3)

2022 ◽  
Vol 2022 ◽  
pp. 1-7
Author(s):  
Jiulong Sha ◽  
Jiawen Gao ◽  
Peiyao Wang ◽  
Qiannan Zhang ◽  
Xinyi Zhang ◽  
...  

Because of poor surface hydrophilicity, meta-aramid fibers readily form flocs by intertwining or interlacing, and this severely affects the uniformity of meta-aramid paper. To investigate the flocculation mechanism of meta-aramid fiber suspensions, the critical flocculant concentration, shear, and compressive network strength of meta-aramid fiber suspensions were examined. A hand sheet former was used to study the influence of the yielding properties of suspensions on the uniformity of meta-aramid paper, and the relationship between the formation index and rheological properties was determined. The results showed that the critical gel concentration ranged from 0.37 to 0.68 g/L, which was much lower than that of plant fiber suspensions. In addition, the compressive yield stress ( P y ) and shear yield stress ( τ y ) of the meta-aramid fiber suspensions were found to increase linearly and exponentially, respectively, with an increasing concentration, and the uniformity index of the paper sheets was found to depend on a power of τ y ⋅ P y . This provides an effective method for predicting paper sheet uniformity.


Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1826
Author(s):  
Hua Yan ◽  
Pingyang Li ◽  
Chi Duan ◽  
Xiaomin Dong

Magnetorheological (MR) grease has advantages of the anti-settlement behavior and excellent sealing property compared with conventional MR materials. However, the rheological behaviors of MR effect and shear yield stress are too small to limit the further applications with MR grease. This paper proposes a composite lithium-based MR grease with boric acid-hydroxyl stearic acid to improve the rheological behaviors. Eight different samples of composite lithium-based MR grease with different ratios of mass between lithium stearate and lithium borate are prepared by the saponification method. The rheological behaviors are tested and discussed with qualitative and quantitative analysis. The experimental results show that the off-state viscosity reduces with the decrement of the ratio of mass under low shear rate which changes from 68.7 Pa·s to 16.5 Pa·s. Lithium stearate content has more effects with off-state viscosity. Based on the Herschel-Bingham model, the shear stress of composite lithium-based MR grease can be improved dramatically by adjusting the ratio of mass which is increased by 170% under the magnetic flux density of 0.2 T. Compared with single lithium-based MR grease, the maximum yield shear stress is increased by 166.7% at off-state and the maximum MR effect is also increased by 19.1%. The MR effect can reach 23,600% with a specific mass ratio of the composite MR grease. The experimental results validate that the feasibility of the performance improvement by the composite lithium-based MR grease.


2021 ◽  
pp. 109963622110370
Author(s):  
O Fashanu ◽  
M Rangapuram ◽  
A Abutunis ◽  
J Newkirk ◽  
K Chandrashekhara ◽  
...  

Sandwich composite structures are comprised of a low-density core (commonly honeycomb) and facesheets. They are typically used in applications that require lightweight for efficient design, such as in the marine and aerospace industries. This work investigates the feasibility of adopting triply periodic minimal surface (TPMS) cellular structures as the core for sandwich composites. Sandwich structures were manufactured using a carbon fiber-reinforced polymer (CFRP) facesheet and three different 304 L stainless steel core structures (honeycomb, gyroid TPMS, and diamond TPMS). Three mechanical tests, namely edgewise compression, three-point bend, and impact test, were carried out to evaluate the performance of each sandwich configuration. The experimental results of the non-traditional sandwich configurations were compared against those of a honeycomb core sandwich composite. The edgewise compression test showed that the ultimate edgewise compressive strength increased by 7% when the honeycomb core was replaced by the gyroid core and reduced by 2% when the diamond core replaced the honeycomb core. The three-point bend test showed that the traditional honeycomb core sandwich configuration had a higher shear yield stress when compared to the non-traditional sandwich structures. The shear yield stress was reduced by 54% when non-traditional sandwich cores were used. The shear ultimate stress was reduced by 41% and 37% when the honeycomb core was replaced by the gyroid and diamond structure, respectively. Impact test results, on the other hand, showed that the peak force recorded during the impact event was reduced, while the absorbed energy was increased when non-traditional cores were used. Peak force was reduced by 28% and 39%, while the absorbed energy was increased by 9% and 16% when the honeycomb core was replaced by the gyroid and diamond cores, respectively.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yu Tong ◽  
Xiaoguang Li ◽  
Penghui Zhao ◽  
Xufeng Dong ◽  
Zhanjun Wu ◽  
...  

The interface between the particles and the carrier fluids has an important influence on the performance of magnetorheological fluid (MRF). In this study, ionic liquids and silicone oils with the same viscosity and different surface tensions were used as carrier fluids to prepare two different carbonyl iron powder (CIP) magnetorheological fluids. The rheological properties of the two magnetorheological fluids were evaluated by the MCR301 rotating rheometer. The experimental results indicate that ionic liquid-based MRF showed higher shear yield strength and more significant MR effect than silicone oil-based ones in higher magnetic field strength. A possible explanation was proposed and proved through experimental data analysis.


2021 ◽  
Vol 60 (2-3) ◽  
pp. 141-154
Author(s):  
Vincenzo Iannotti ◽  
Luca Lanotte ◽  
Giovanna Tomaiuolo ◽  
Giovanni Ausanio ◽  
Raffaele Graziano ◽  
...  

AbstractAn innovative experimental apparatus for the direct measurement of yield stress was conceived and realized. It is based on a torsion pendulum equipped with a magnetic dipole and a rotating cylinder immersed in the material to be investigated. The pendulum equilibrium state depends on the mechanical torque applied due to an external magnetic induction field, elastic reaction of the suspension wire, and shear yield stress. Experimental results are reported showing that the behavior of the pendulum rotation angle, in different equilibrium conditions, provides evidence of the yield stress presence and enables its evaluation by equilibrium equations. The dependence on time of the equilibrium approach was also studied, contributing to shed light on the relaxation effect in the transition from a fluid-like to solid-like behavior, as well as on the eventual thixotropic effects in non-Newtonian fluids. The validity of the proposed technique and related experimental apparatus was tested in aqueous Carbopol solutions, with different weight percentages. The linear procedure, combined with the effectiveness and reliability of the proposed experimental method, candidates it to be used for the study of peculiar behaviors of other yield stress complex fluid such as blood, crude waxy oils, ice slurries, and coating layer used in the food industry and also for fault sliding in geodynamics.


Author(s):  
K Tomlinson ◽  
DI Fletcher ◽  
R Lewis

Advances in rail materials from conventional rail steels to those with higher yield points and the potential of additively manufactured laser clad coatings to improve the durability of railway track components presents a new challenge in characterisation. Many of these new and novel materials have either limited test samples available or are more resistant to strain and therefore present challenges in characterisation. The method reported here uses twin disc tests to simulate cyclic loading experienced by rail steel in service. A sample from a single test condition is analysed, measuring the shear yield stress and the accumulated shear strain at multiple depths below the contact surface, from which a Shear Yield Stress – Plastic Shear Strain (SYS-PSS) relationship is extracted. Knowledge of the stress history of a rail sample is not required to apply the method and minimal samples are required, providing a technique which can be used on rail steel samples removed from service.


Author(s):  
Zhao-Dong Xu ◽  
Chun-Li Sun

Magnetorheological (MR) fluid is a typical intelligent material which is widely adopted in the mitigation of civil engineering structures, and it is normally composed of nano-sized or micro-sized iron particles, carrier fluids and additives. Because of the complexity of its composition, it is one of the research hotspot to propose a micromechanical model which can effectively describe the micromorphological transformation as well as characteristics of MR fluids. In this study, a single-double chains micromechanical model of MR fluids is proposed by taking into consideration of the influence of volume fraction and magnetic induction on the microstructure evolution of MR fluids based on the coupled field as well as magnetic dipole theory. Additionally, the shear yield stress test of the self-prepared MR fluids with multi-wall carbon nanotubes(MWCNTs) and graphene oxide (GO) composites coated ferromagnetic particles is carried out by MCR302 rotational rheometer and the results have been compared with the theoretical values of the single-double chains micromechanical model to verify the effectiveness and accuracy of the proposed model.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Zhonghui Zhang ◽  
Yuanhui Li ◽  
Lei Ren ◽  
Zhenbang Guo ◽  
Haiqiang Jiang ◽  
...  

The use of blast furnace slag-based binders in cemented paste backfill (CPB) has become increasingly popular in China, due to its low cost and superior early-age strength. Increasing the solid content can increase the strength of CPB, but it will lead to a decrease in its fluidity. As a chemical admixture that can improve CPB slurry fluidity, superplasticizer is gaining increased interest in the field of CPB. In this study, the effects of superplasticizer types and dosages, curing time, solid content, and binder content on the rheological properties of fresh CPB made of blast furnace slag-based binder (Slag-CPB) were studied. For Slag-CPB samples, polycarboxylate (PC) has the best water-reducing effect, followed by polymelamine sulfonate (PMS) and polynaphthalene sulfonate (PNS). In the absence of a superplasticizer, the shear yield stress and plastic viscosity of Slag-CPB are lower than those of CPB made of ordinary Portland cement (OPC-CPB). The water-reducing effect of PC on OPC-CPBs samples is stronger than that of Slag-CPB samples. The degradation rate of the water-reducing effect in slag-based samples is higher than that in cement-based samples. The effect of PC is affected by solid content and binder content. These results will contribute to a better understanding of the rheological behavior of Slag-CPB with superplasticizer.


2021 ◽  
Vol 59 (1) ◽  
pp. 125
Author(s):  
Thanh Manh Nguyen ◽  
Kien Trung Nguyen ◽  
Sergei Alexandrov

This paper present a method to build up statically admissible slip-line field (the field of characteristics) and, as a result, the field of statically admissible stresses of the compression of a three-layer symmetric strip consisting of two different rigid perfectly plastic materials between rough, parallel, rigid plates (for the case: the shear yield  stress of the inner layer is greater than that of the outer layer). Under the conditions of sticking regime at bi-material interfaces and sliding occurs at rigid surfaces with maximum friction, the appropriate singularities on the boundary between the two materials have been assumed, then a standard numerical slip-line technique is supplemented with iterative procedure to calculate characteristic and stress fields that satisfy simultaneously the stress boundary conditions as well as the regime of sticking on the bi-material interfaces


Sign in / Sign up

Export Citation Format

Share Document