scholarly journals Some observations regarding steady laminar flows past bluff bodies

Author(s):  
Bengt Fornberg ◽  
Alan R. Elcrat

Steady laminar flows past simple objects, such as a cylinder or a sphere, have been studied for well over a century. Theoretical, experimental and numerical methods have all contributed fundamentally towards our understanding of the resulting flows. This article focuses on developments during the past few decades, when mostly numerical and asymptotical advances have provided insights also for steady, although unstable, high-Reynolds-numbers flow regimes.

1993 ◽  
Vol 5 (7) ◽  
pp. 1703-1717 ◽  
Author(s):  
John R. Richards ◽  
Antony N. Beris ◽  
Abraham M. Lenhoff

1986 ◽  
Vol 39 (4) ◽  
pp. 511-524 ◽  
Author(s):  
Mohamed Gad-el-Hak

During the past five years, several research programs have been conducted to reexamine the subject of boundary layer interactions with compliant coatings. One of the objectives of the research was to answer the question: Can compliant coatings delay transition and/or significantly reduce turbulence skin friction on bodies at high Reynolds numbers? Several significant developments have been achieved by the many investigators participating in these studies. The purpose of this article is to review the progress in our understanding of compliant coating interactions with laminar, transitional, and turbulent boundary layers. The paper will include some work done prior to the recent five year period and available in the open literature, but will emphasize more recent work, some of which is not as yet published.


2015 ◽  
Author(s):  
Harish Gopalan ◽  
Peifeng Ma ◽  
Haihua Xu ◽  
Ankit Choudhary ◽  
Anis Hussain ◽  
...  

Accurate prediction of hydrodynamic forces on tandem bluff bodies at high Reynolds numbers is of interest in many fields of offshore engineering. The most commonly used turbulence modeling strategy for studying these flows is unsteady Reynolds-averaged Navier-Stokes methods (URANS) due to its speed. However, the accuracy of URANS results are problem dependent and usually poor for bluff bodies flow separation predictions. To overcome this deficiency, two different modeling methods have been considered: (i) large eddy simulation (LES) and (ii) non-linear URANS. LES are accurate and computationally feasible for low to moderate Reynolds number flows. However, the cost of LES makes it infeasible at high Reynolds numbers. On the other hand, non-linear URANS methods are fast like URANS, and its accuracy is comparable to LES for certain flows. It is usually not known in advance if the simulations using non-linear methods are accurate. Hybrid models have been proposed in the literature as an alternative to existing methods. They employ a URANS model in the near-body region and LES in the near and far wake regions. Simulations performed using hybrid models are computationally cheaper than LES and more accurate than URANS. Most hybrid models developed in the literature employ linear URANS models. The use of non-linear URANS models in the hybrid context has not received significant attention. In this study, we propose the use of a hybrid model based on a non-linear URANS model. Flow past tandem cylinders, with different spacing ratio, at sub-critical Reynolds number regime, is chosen as the test case. Simulations are also performed using URANS and linear hybrid models for comparison. It is shown that the non-linear hybrid models provides the best agreement to measurement data in the literature. Non-linear URANS models will be shown to provide acceptable prediction of hydrodynamic forces. The models are finally used to predict the current load on a generic multi-column floater.


2012 ◽  
Vol 43 (5) ◽  
pp. 589-613
Author(s):  
Vyacheslav Antonovich Bashkin ◽  
Ivan Vladimirovich Egorov ◽  
Ivan Valeryevich Ezhov ◽  
Sergey Vladimirovich Utyuzhnikov

AIAA Journal ◽  
1999 ◽  
Vol 37 ◽  
pp. 1062-1071 ◽  
Author(s):  
A. Seifert ◽  
L. G. Pack

AIAA Journal ◽  
2000 ◽  
Vol 38 ◽  
pp. 825-834
Author(s):  
F. Novak ◽  
T. Sarpkaya

2004 ◽  
Author(s):  
William L. Keith ◽  
Kimberly M. Cipolla ◽  
David R. Hart ◽  
Deborah A. Furey

Author(s):  
Michael Maurer ◽  
Jens von Wolfersdorf ◽  
Michael Gritsch

An experimental and numerical study was conducted to determine the thermal performance of V-shaped ribs in a rectangular channel with an aspect ratio of 2:1. Local heat transfer coefficients were measured using the steady state thermochromic liquid crystal technique. Periodic pressure losses were obtained with pressure taps along the smooth channel sidewall. Reynolds numbers from 95,000 to 500,000 were investigated with V-shaped ribs located on one side or on both sides of the test channel. The rib height-to-hydraulic diameter ratios (e/Dh) were 0.0625 and 0.02, and the rib pitch-to-height ratio (P/e) was 10. In addition, all test cases were investigated numerically. The commercial software FLUENT™ was used with a two-layer k-ε turbulence model. Numerically and experimentally obtained data were compared. It was determined that the heat transfer enhancement based on the heat transfer of a smooth wall levels off for Reynolds numbers over 200,000. The introduction of a second ribbed sidewall slightly increased the heat transfer enhancement whereas the pressure penalty was approximately doubled. Diminishing the rib height at high Reynolds numbers had the disadvantage of a slightly decreased heat transfer enhancement, but benefits in a significantly reduced pressure loss. At high Reynolds numbers small-scale ribs in a one-sided ribbed channel were shown to have the best thermal performance.


Sign in / Sign up

Export Citation Format

Share Document