Hybrid RANS-LES Formulations for Wake Interference Physics in Tandem Cylinders and Multi-Column Floaters

2015 ◽  
Author(s):  
Harish Gopalan ◽  
Peifeng Ma ◽  
Haihua Xu ◽  
Ankit Choudhary ◽  
Anis Hussain ◽  
...  

Accurate prediction of hydrodynamic forces on tandem bluff bodies at high Reynolds numbers is of interest in many fields of offshore engineering. The most commonly used turbulence modeling strategy for studying these flows is unsteady Reynolds-averaged Navier-Stokes methods (URANS) due to its speed. However, the accuracy of URANS results are problem dependent and usually poor for bluff bodies flow separation predictions. To overcome this deficiency, two different modeling methods have been considered: (i) large eddy simulation (LES) and (ii) non-linear URANS. LES are accurate and computationally feasible for low to moderate Reynolds number flows. However, the cost of LES makes it infeasible at high Reynolds numbers. On the other hand, non-linear URANS methods are fast like URANS, and its accuracy is comparable to LES for certain flows. It is usually not known in advance if the simulations using non-linear methods are accurate. Hybrid models have been proposed in the literature as an alternative to existing methods. They employ a URANS model in the near-body region and LES in the near and far wake regions. Simulations performed using hybrid models are computationally cheaper than LES and more accurate than URANS. Most hybrid models developed in the literature employ linear URANS models. The use of non-linear URANS models in the hybrid context has not received significant attention. In this study, we propose the use of a hybrid model based on a non-linear URANS model. Flow past tandem cylinders, with different spacing ratio, at sub-critical Reynolds number regime, is chosen as the test case. Simulations are also performed using URANS and linear hybrid models for comparison. It is shown that the non-linear hybrid models provides the best agreement to measurement data in the literature. Non-linear URANS models will be shown to provide acceptable prediction of hydrodynamic forces. The models are finally used to predict the current load on a generic multi-column floater.

1956 ◽  
Vol 60 (541) ◽  
pp. 67-70
Author(s):  
T. A. Thomson

The blow-down type of intermittent, supersonic tunnel is attractive because of its simplicity and because relatively high Reynolds numbers can be obtained for a given size of test section. An adverse characteristic, however, is the fall of stagnation temperature during runs, which can affect experiments in several ways. The Reynolds number varies and the absolute velocity is not constant, even if the Mach number and pressure are; heat-transfer cannot be studied under controlled conditions and the experimental errors arising from the effect of heat-transfer on the boundary layer vary in time. These effects can become significant in quantitative experiments if the tunnel is large and the variation of temperature very rapid; the expense required to eliminate them might then be justified.


2012 ◽  
Vol 702 ◽  
pp. 298-331 ◽  
Author(s):  
Promode R. Bandyopadhyay ◽  
David N. Beal ◽  
J. Dana Hrubes ◽  
Arun Mangalam

AbstractHydrodynamic effects of the relationship between the roll and pitch oscillations in low-aspect-ratio fins, with a laminar section and a rounded leading edge, flapping at transitional to moderately high Reynolds numbers, are considered. The fin is hinged at one end and its roll amplitude is large. Also examined is how this relationship is affected by spanwise twist, which alters the pitch oscillation amplitude and its phase relative to the roll motion. Force, efficiency and surface hot-film-anemometry measurements, and flow visualization are carried out in a tow tank. A fin of an abstracted penguin-wing planform and a NACA 0012 cross-section is used, and the chord Reynolds number varies from 3558 to 150 000 based on total speed. The fin is forced near the natural shedding frequency. Strouhal number and pitch amplitude are directly related when thrust is produced, and efficiency is maximized in narrow combinations of Strouhal number and pitch amplitude when oscillation of the leading-edge stagnation point is minimal. Twist makes the angle of attack uniform along the span and enhances thrust by up to 24 %, while maintaining high efficiency. Only 5 % of the power required to roll is spent to pitch, and yet roll and pitch are directly related. During hovering, dye visualization shows that a diffused leading-edge vortex is produced in rigid fins, which enlarges along the span; however, twist makes the vortex more uniform and the fin in turn requires less power to roll. Low-order phase maps of the measurements of force oscillation versus its derivative are modelled as due to van der Pol oscillators; the higher-order maps show trends in the sub-regimes of the transitional Reynolds number. Fin oscillation imparts a chordwise fluid motion, yielding a Stokes wave in the near-wall vorticity layer. When the roll and pitch oscillations are directly related, the wave is optimized: causing vorticity lift-up as the fin is decelerated at the roll extremity; the potential energy at the stagnation point is converted into kinetic energy; a vortex is produced as the lifted vorticity is wrapped around the leading edge; and free-stream reattachment keeps the vortex trapped. When the twist oscillation is phased along the span, this vortex becomes self-preserving at all amplitudes of twist, indicating the most stable (low-bandwidth) tuned nature.


1977 ◽  
Vol 28 (4) ◽  
pp. 259-264 ◽  
Author(s):  
J L Stollery ◽  
A V Murthy

SummaryThe paper suggests a simple method of generating intermittent reservoir conditions for an intermittent, cryogenic wind tunnel. Approximate performance estimates are given and it is recommended that further studies be made because this type of tunnel could be valuable in increasing the opportunities for research at high Reynolds numbers.


1948 ◽  
Vol 15 (4) ◽  
pp. 344-348
Author(s):  
J. R. Weske

Abstract It is found that the flow in curved ducts at high Reynolds numbers may be analyzed by methods adapted from the theory of boundary layers. Integration of the equation of motion of the “shedding layer” led to relations for the net pressure drop of curved ducts as a function of radius ratio and of Reynolds number.


Author(s):  
Sam Ghazi-Hesami ◽  
Dylan Wise ◽  
Keith Taylor ◽  
Étienne Robert ◽  
Peter Ireland

Abstract An experimental and numerical study of the convective heat transfer enhancement provided by two rib families (W and Broken W) is presented, covering Reynolds numbers (Re) between 300,000 to 900,000 in a straight channel with a rectangular cross section (AR=1.29). These high Reynolds numbers were selected for the current study since most data in the available literature typically pertain to investigations at lower Reynolds numbers. The objective of this study is to assess the local heat transfer coefficient (HTC) enhancement (compared with a smooth channel) and the overall thermal performance, taking into account the effect of increased roughness on the friction factor, of a group of W shaped turbulators over a wide range of Reynolds numbers. Furthermore, the effects of increasing the rib spacing on the thermal performance of the Broken W configuration are presented and discussed. The numerical results are compared against heat transfer measurements obtained using the Transient Liquid Crystal (TLC) method. The research shows that for the Broken W turbulators, increasing the Reynolds number is associated with an overall decrease of the thermal performance while the thermal performance of the W configuration is relatively insensitive to Reynolds number. Nevertheless, the Broken W configuration delivers higher thermal performance and heat transfer compared with the W configuration for the range of Re investigated. The Broken W configuration with a pitch spacing of 10 times the rib height was shown to provide the optimal thermal performance in the configurations investigated here.


Author(s):  
Bengt Fornberg ◽  
Alan R. Elcrat

Steady laminar flows past simple objects, such as a cylinder or a sphere, have been studied for well over a century. Theoretical, experimental and numerical methods have all contributed fundamentally towards our understanding of the resulting flows. This article focuses on developments during the past few decades, when mostly numerical and asymptotical advances have provided insights also for steady, although unstable, high-Reynolds-numbers flow regimes.


2015 ◽  
Vol 779 ◽  
pp. 371-389 ◽  
Author(s):  
M. Vallikivi ◽  
M. Hultmark ◽  
A. J. Smits

Measurements are presented in zero-pressure-gradient, flat-plate, turbulent boundary layers for Reynolds numbers ranging from $\mathit{Re}_{{\it\tau}}=2600$ to $\mathit{Re}_{{\it\tau}}=72\,500$ ($\mathit{Re}_{{\it\theta}}=8400{-}235\,000$). The wind tunnel facility uses pressurized air as the working fluid, and in combination with MEMS-based sensors to resolve the small scales of motion allows for a unique investigation of boundary layer flow at very high Reynolds numbers. The data include mean velocities, streamwise turbulence variances, and moments up to 10th order. The results are compared to previously reported high Reynolds number pipe flow data. For $\mathit{Re}_{{\it\tau}}\geqslant 20\,000$, both flows display a logarithmic region in the profiles of the mean velocity and all even moments, suggesting the emergence of a universal behaviour in the statistics at these high Reynolds numbers.


1993 ◽  
Vol 115 (1) ◽  
pp. 31-39 ◽  
Author(s):  
J. R. Chaplin

Measurements of pressures around a circular cylinder with fine surface roughness in planar oscillatory flow reveal considerable changes in drag and inertia coefficients over the Reynolds number range 2.5 × 105 to 7.5 × 105, and at Keulegan-Carpenter numbers between 5 and 25. In most respects, these results are shown to be compatible with previous measurements in planar oscillatory flow, and with previous measurements in which the same 0.5-m-dia cylinder was tested in waves.


2016 ◽  
Author(s):  
Linwei Shen ◽  
Rajeev Kumar Jaiman ◽  
Peter Francis Bernad Adaikalaraj ◽  
Vaibhav Joshi ◽  
Jungao Wang ◽  
...  

A group of circular cylinders exists in many engineering practices, such as offshore drilling riser system. Due to the interference between the riser main tube and auxiliary lines, the hydrodynamic forces acting on the riser system is much different from those on a single circular cylinder. It is very rare in the publication and still not certain in the determination of the forces in the drilling riser design of the industry. Particularly, it is unclear of the hydrodynamic forces when the Reynolds number is very high which is quite common in the real ocean fields. In this paper, the stationary riser system consisting of a group of six circular cylinders with unequal diameters is considered. The hydrodynamic forces acting on the main cylinder in the Reynolds number ranging from 105 to 2×106 are numerically calculated by solving the Reynolds averaged Navier-Stokes (RANS) equations. The Spalart-Allmaras RANS model is employed to account for the turbulence effect. It is found that drag coefficients are close to 1 when the incoming flow is symmetrical with respect to the configuration of the cylinders and are dramatically reduced when the incoming flow is asymmetrical. No “drag crisis”, which is a well-known phenomenon in a single cylinder case, is found in this particular range of Reynolds numbers. A detailed analysis, including the flow field and pressure distribution around the main tube, is also presented in the present work. The numerical result of the hydrodynamic forces on the main line is very helpful for the engineers to determine the drag coefficients in the practice of drilling riser system design, under the guidance of API-RP-16Q.


Sign in / Sign up

Export Citation Format

Share Document