scholarly journals Fractional-order heat conduction models from generalized Boltzmann transport equation

Author(s):  
Shu-Nan Li ◽  
Bing-Yang Cao

The relationship between fractional-order heat conduction models and Boltzmann transport equations (BTEs) lacks a detailed investigation. In this paper, the continuity, constitutive and governing equations of heat conduction are derived based on fractional-order phonon BTEs. The underlying microscopic regimes of the generalized Cattaneo equation are thereafter presented. The effective thermal conductivity κ eff converges in the subdiffusive regime and diverges in the superdiffusive regime. A connection between the divergence and mean-square displacement 〈|Δ x | 2 〉 ∼  t γ is established, namely, κ eff  ∼  t γ −1 , which coincides with the linear response theory. Entropic concepts, including the entropy density, entropy flux and entropy production rate, are studied likewise. Two non-trivial behaviours are observed, including the fractional-order expression of entropy flux and initial effects on the entropy production rate. In contrast with the continuous time random walk model, the results involve the non-classical continuity equations and entropic concepts. This article is part of the theme issue ‘Advanced materials modelling via fractional calculus: challenges and perspectives’.

Entropy ◽  
2019 ◽  
Vol 21 (2) ◽  
pp. 204 ◽  
Author(s):  
Shu-Nan Li ◽  
Bing-Yang Cao

Generalized expressions of the entropy and related concepts in non-Fourier heat conduction have attracted increasing attention in recent years. Based on standard and fractional phonon Boltzmann transport equations (BTEs), we study entropic functionals including entropy density, entropy flux and entropy production rate. Using the relaxation time approximation and power series expansion, macroscopic approximations are derived for these entropic concepts. For the standard BTE, our results can recover the entropic frameworks of classical irreversible thermodynamics (CIT) and extended irreversible thermodynamics (EIT) as if there exists a well-defined effective thermal conductivity. For the fractional BTEs corresponding to the generalized Cattaneo equation (GCE) class, the entropy flux and entropy production rate will deviate from the forms in CIT and EIT. In these cases, the entropy flux and entropy production rate will contain fractional-order operators, which reflect memory effects.


Author(s):  
Christian Maes

We review the physical meaning and mathematical implementation of the condition of local detailed balance for a class of nonequilibrium mesoscopic processes. A central concept is that of fluctuating entropy flux for which the steady average gives the mean entropy production rate. We repeat how local detailed balance is essentially equivalent to the widely discussed fluctuation relations for that entropy flux and hence is at most ``only half of the story.''


2011 ◽  
Vol 02 (06) ◽  
pp. 615-620 ◽  
Author(s):  
Elena Izquierdo-Kulich ◽  
Esther Alonso-Becerra ◽  
José M Nieto-Villar

2006 ◽  
Vol 76 (4) ◽  
pp. 595-601 ◽  
Author(s):  
M. M Bandi ◽  
W. I Goldburg ◽  
J. R Cressman

Entropy ◽  
2018 ◽  
Vol 20 (11) ◽  
pp. 881 ◽  
Author(s):  
Karl Hoffmann ◽  
Kathrin Kulmus ◽  
Christopher Essex ◽  
Janett Prehl

The entropy production rate is a well established measure for the extent of irreversibility in a process. For irreversible processes, one thus usually expects that the entropy production rate approaches zero in the reversible limit. Fractional diffusion equations provide a fascinating testbed for that intuition in that they build a bridge connecting the fully irreversible diffusion equation with the fully reversible wave equation by a one-parameter family of processes. The entropy production paradox describes the very non-intuitive increase of the entropy production rate as that bridge is passed from irreversible diffusion to reversible waves. This paradox has been established for time- and space-fractional diffusion equations on one-dimensional continuous space and for the Shannon, Tsallis and Renyi entropies. After a brief review of the known results, we generalize it to time-fractional diffusion on a finite chain of points described by a fractional master equation.


Sign in / Sign up

Export Citation Format

Share Document