scholarly journals Sources and space–time distribution of the electromagnetic pulses in experiments on inertial confinement fusion and laser–plasma acceleration

Author(s):  
F. Consoli ◽  
P. L. Andreoli ◽  
M. Cipriani ◽  
G. Cristofari ◽  
R. De Angelis ◽  
...  

When high-energy and high-power lasers interact with matter, a significant part of the incoming laser energy is transformed into transient electromagnetic pulses (EMPs) in the range of radiofrequencies and microwaves. These fields can reach high intensities and can potentially represent a significative danger for the electronic devices placed near the interaction point. Thus, the comprehension of the origin of these electromagnetic fields and of their distribution is of primary importance for the safe operation of high-power and high-energy laser facilities, but also for the possible use of these high fields in several promising applications. A recognized main source of EMPs is the target positive charging caused by the fast-electron emission due to laser–plasma interactions. The fast charging induces high neutralization currents from the conductive walls of the vacuum chamber through the target holder. However, other mechanisms related to the laser–target interaction are also capable of generating intense electromagnetic fields. Several possible sources of EMPs are discussed here and compared for high-energy and high-intensity laser–matter interactions, typical for inertial confinement fusion and laser–plasma acceleration. The possible effects on the electromagnetic field distribution within the experimental chamber, due to particle beams and plasma emitted from the target, are also described. This article is part of a discussion meeting issue ‘Prospects for high gain inertial fusion energy (part 2)’.

Author(s):  
Jianqiang Zhu ◽  
Jian Zhu ◽  
Xuechun Li ◽  
Baoqiang Zhu ◽  
Weixin Ma ◽  
...  

In this paper, we review the status of the multifunctional experimental platform at the National Laboratory of High Power Laser and Physics (NLHPLP). The platform, including the SG-II laser facility, SG-II 9th beam, SG-II upgrade (SG-II UP) facility, and SG-II 5 PW facility, is operational and available for interested scientists studying inertial confinement fusion (ICF) and a broad range of high-energy-density physics. These facilities can provide important experimental capabilities by combining different pulse widths of nanosecond, picosecond, and femtosecond scales. In addition, the SG-II UP facility, consisting of a single petawatt system and an eight-beam nanosecond system, is introduced including several laser technologies that have been developed to ensure the performance of the facility. Recent developments of the SG-II 5 PW facility are also presented.


1993 ◽  
Vol 5 (9) ◽  
pp. 3328-3336 ◽  
Author(s):  
C. J. Keane ◽  
B. A. Hammel ◽  
D. R. Kania ◽  
J. D. Kilkenny ◽  
R. W. Lee ◽  
...  

2020 ◽  
Vol 161 ◽  
pp. 111983
Author(s):  
Xiaoxia Huang ◽  
Xuewei Deng ◽  
Wei Zhou ◽  
Huaiwen Guo ◽  
Bowang Zhao ◽  
...  

2016 ◽  
Vol 34 (2) ◽  
pp. 338-342 ◽  
Author(s):  
Y. Zhao ◽  
Z. Zhang ◽  
W. Gai ◽  
Y. Du ◽  
S. Cao ◽  
...  

AbstractWe present a scheme of electron beam radiography to dynamically diagnose the high energy density (HED) matter in three orthogonal directions simultaneously based on electron Linear Accelerator. The dynamic target information such as, its profile and density could be obtained through imaging the scattered electron beam passing through the target. Using an electron bunch train with flexible time structure, a very high temporal evolution could be achieved. In this proposed scheme, it is possible to obtain 1010 frames/second in one experimental event, and the temporal resolution can go up to 1 ps, spatial resolution to 1 µm. Successful demonstration of this concept will have a major impact for both future inertial confinement fusion science and HED physics research.


1984 ◽  
Vol 2 (2) ◽  
pp. 153-165 ◽  
Author(s):  
P. A. Miller ◽  
P. L. Dreike ◽  
J. P. Quintenz ◽  
R. J. Anderson ◽  
J. T. Crow ◽  
...  

The development of high power ion diodes for inertial confinement fusion is in progress on the PBFA I accelerator. The three main types of magnetically-insulated ion diodes, the Applied-B, Hybrid, and Pinch Reflex diodes, are compared. This paper presents the results from the first series of tests of the Hybrid diode.


Sign in / Sign up

Export Citation Format

Share Document