scholarly journals Introduction to ‘Recent progress and open frontiers in Turing’s theory of morphogenesis’

Author(s):  
Andrew L. Krause ◽  
Eamonn A Gaffney ◽  
Philip K. Maini ◽  
Václav Klika

Elucidating pattern forming processes is an important problem in the physical, chemical and biological sciences. Turing's contribution, after being initially neglected, eventually catalysed a huge amount of work from mathematicians, physicists, chemists and biologists aimed towards understanding how steady spatial patterns can emerge from homogeneous chemical mixtures due to the reaction and diffusion of different chemical species. While this theory has been developed mathematically and investigated experimentally for over half a century, many questions still remain unresolved. This theme issue places Turing's theory of pattern formation in a modern context, discussing the current frontiers in foundational aspects of pattern formation in reaction-diffusion and related systems. It highlights ongoing work in chemical, synthetic and developmental settings which is helping to elucidate how important Turing's mechanism is for real morphogenesis, while highlighting gaps that remain in matching theory to reality. The theme issue also surveys a variety of recent mathematical research pushing the boundaries of Turing's original theory to more realistic and complicated settings, as well as discussing open theoretical challenges in the analysis of such models. It aims to consolidate current research frontiers and highlight some of the most promising future directions. This article is part of the theme issue ‘Recent progress and open frontiers in Turing’s theory of morphogenesis’.

Author(s):  
Lucas Goehring

Pattern formation is a natural property of nonlinear and non-equilibrium dynamical systems. Geophysical examples of such systems span practically all observable length scales, from rhythmic banding of chemical species within a single mineral crystal, to the morphology of cusps and spits along hundreds of kilometres of coastlines. This article briefly introduces the general principles of pattern formation and argues how they can be applied to open problems in the Earth sciences. Particular examples are then discussed, which summarize the contents of the rest of this Theme Issue.


2000 ◽  
Vol 355 (1394) ◽  
pp. 281-305 ◽  
Author(s):  
Jacques Dumais ◽  
Lionel G. Harrison

The dasycladalean algae produce diverse whorled structures, among which the best known are the vegetative and reproductive whorls of Acetabularia acetabulum . In this paper, we review the literature pertaining to the origin of these structures. The question is addressed in terms of the necessary patternforming events and the possible mechanisms involved, an outlook we call the pattern formation viewpoint. The pattern–forming events involved in the morphogenesis of the vegetative and reproductive whorls of Acetabularia have been used to define five and six morphogenetic stages, respectively. We discuss three published mechanisms which account, at least in part, for the pattern–forming events. The mechanisms are mechanical buckling of the cell wall, reaction–diffusion of morphogen molecules along the cell membrane, and mechanochemical interactions between Ca 2+ ions and the cytoskeleton in the cytosol. The numerous differences between these mechanisms provide experimental grounds to test their validity. To date, the results of these experiments point towards reaction–diffusion as the most likely patterning mechanism. Finally, we consider the evolutionary origin of the vegetative and reproductive whorls and provide mechanistic explanations for some of the major evolutionary advances.


Author(s):  
Miho Stephanie Kitazawa

AbstractFloral phyllotaxis is a relatively robust phenotype; trimerous and pentamerous arrangements are widely observed in monocots and core eudicots. Conversely, it also shows variability in some angiosperm clades such as ‘ANA’ grade (Amborellales, Nymphaeales, and Austrobaileyales), magnoliids, and Ranunculales. Regardless of the phylogenetic relationship, however, phyllotactic pattern formation appears to be a common process. What are the causes of the variability in floral phyllotaxis and how has the variation of floral phyllotaxis contributed to floral diversity? In this review, I summarize recent progress in studies on two related fields to develop answers to these questions. First, it is known that molecular and cellular stochasticity are inevitably found in biological systems, including plant development. Organisms deal with molecular stochasticity in several ways, such as dampening noise through gene networks or maintaining function through cellular redundancy. Recent studies on molecular and cellular stochasticity suggest that stochasticity is not always detrimental to plants and that it is also essential in development. Second, studies on vegetative and inflorescence phyllotaxis have shown that plants often exhibit variability and flexibility in phenotypes. Three types of phyllotaxis variations are observed, namely, fluctuation around the mean, transition between regular patterns, and a transient irregular organ arrangement called permutation. Computer models have demonstrated that stochasticity in the phyllotactic pattern formation plays a role in pattern transitions and irregularities. Variations are also found in the number and positioning of floral organs, although it is not known whether such variations provide any functional advantages. Two ways of diversification may be involved in angiosperm floral evolution: precise regulation of organ position and identity that leads to further specialization of organs and organ redundancy that leads to flexibility in floral phyllotaxis.


2021 ◽  
Vol 2 (1) ◽  
pp. 168-186
Author(s):  
Bahareh Vafakish ◽  
Lee D. Wilson

The nanoreactor concept and its application as a modality to carry out chemical reactions in confined and compartmentalized structures continues to receive increasing attention. Micelle-based nanoreactors derived from various classes of surfactant demonstrate outstanding potential for chemical synthesis. Polysaccharide (glycan-based) surfactants are an emerging class of biodegradable, non-toxic, and sustainable alternatives over conventional surfactant systems. The unique structure of glycan-based surfactants and their micellar structures provide a nanoenvironment that differs from that of the bulk solution, and supported by chemical reactions with uniquely different reaction rates and mechanisms. In this review, the aggregation of glycan-based surfactants to afford micelles and their utility for the synthesis of selected classes of reactions by the nanoreactor technique is discussed. Glycan-based surfactants are ecofriendly and promising surfactants over conventional synthetic analogues. This contribution aims to highlight recent developments in the field of glycan-based surfactants that are relevant to nanoreactors, along with future opportunities for research. In turn, coverage of research for glycan-based surfactants in nanoreactor assemblies with tailored volume and functionality is anticipated to motivate advanced research for the synthesis of diverse chemical species.


2018 ◽  
Vol 122 (6) ◽  
pp. 3669-3676 ◽  
Author(s):  
Masaki Itatani ◽  
Qing Fang ◽  
Kei Unoura ◽  
Hideki Nabika

Author(s):  
Y. Meurice ◽  
R. Perry ◽  
S.-W. Tsai

The renormalization group (RG) method developed by Ken Wilson more than four decades ago has revolutionized the way we think about problems involving a broad range of energy scales such as phase transitions, turbulence, continuum limits and bifurcations in dynamical systems. The Theme Issue provides articles reviewing recent progress made using the RG method in atomic, condensed matter, nuclear and particle physics. In the following, we introduce these articles in a way that emphasizes common themes and the universal aspects of the method.


Development ◽  
1990 ◽  
Vol 110 (1) ◽  
pp. 1-18 ◽  
Author(s):  
S.A. Newman ◽  
W.D. Comper

The role of ‘generic’ physical mechanisms in morphogenesis and pattern formation of tissues is considered. Generic mechanisms are defined as those physical processes that are broadly applicable to living and non-living systems, such as adhesion, surface tension and gravitational effects, viscosity, phase separation, convection and reaction-diffusion coupling. They are contrasted with ‘genetic’ mechanisms, a term reserved for highly evolved, machine-like, biomolecular processes. Generic mechanisms acting upon living tissues are capable of giving rise to morphogenetic rearrangements of cytoplasmic, tissue and extracellular matrix components, sometimes leading to ‘microfingers’, and to chemical waves or stripes. We suggest that many morphogenetic and patterning effects are the inevitable outcome of recognized physical properties of tissues, and that generic physical mechanisms that act on these properties are complementary to, and interdependent with genetic mechanisms. We also suggest that major morphological reorganizations in phylogenetic lineages may arise by the action of generic physical mechanisms on developing embryos. Subsequent evolution of genetic mechanisms could stabilize and refine developmental outcomes originally guided by generic effects.


Sign in / Sign up

Export Citation Format

Share Document