Polysaccharides
Latest Publications


TOTAL DOCUMENTS

63
(FIVE YEARS 63)

H-INDEX

0
(FIVE YEARS 0)

Published By MDPI AG

2673-4176

2022 ◽  
Vol 3 (1) ◽  
pp. 136-177
Author(s):  
Lucia García-Guzmán ◽  
Gustavo Cabrera-Barjas ◽  
Cintya G. Soria-Hernández ◽  
Johanna Castaño ◽  
Andrea Y. Guadarrama-Lezama ◽  
...  

The food packaging sector generates large volumes of plastic waste due to the high demand for packaged products with a short shelf-life. Biopolymers such as starch-based materials are a promising alternative to non-renewable resins, offering a sustainable and environmentally friendly food packaging alternative for single-use products. This article provides a chronology of the development of starch-based materials for food packaging. Particular emphasis is placed on the challenges faced in processing these materials using conventional processing techniques for thermoplastics and other emerging techniques such as electrospinning and 3D printing. The improvement of the performance of starch-based materials by blending with other biopolymers, use of micro- and nano-sized reinforcements, and chemical modification of starch is discussed. Finally, an overview of recent developments of these materials in smart food packaging is given.


2022 ◽  
Vol 3 (1) ◽  
pp. 121-135
Author(s):  
Danusa Silva da Costa ◽  
Katiuchia Pereira Takeuchi ◽  
Richard Marins da Silva ◽  
Josemar Gonçalves de Oliveira Filho ◽  
Mirella Romanelli Vicente Bertolo ◽  
...  

The objective of this study was to develop and characterize cassava-starch-based films incorporated with buriti (Mauritia flexuosa L.) oil and emulsifier (Tween 20). An experimental factorial design 22 with three central points was used to develop the films, by varying the concentrations of buriti oil (0.15 to 0.45% w/v) and emulsifier (0.02 to 0.04% w/v). Film thickness and weight increased with increasing buriti oil concentration. The water vapor permeability of the films ranged from 0.22 to 0.366 g mm h−1 m−2 kPa−1. The tensile strength values varied from 4.21 to 6.95 MPa, the elasticity modulus varied from 538.53 to 722.78 MPa, and elongation to rupture varied from 1.13 to 1.66%. The film color was characterized as yellowish, dark, and intense (higher oil content); and clear and a low-intensity color (lower oil content). The films presented a total carotenoid content ranging from 3.63 to 29.73 μg β-carotene/g, which may have resulted in their antioxidant potential against DPPH• (1,1-diphenyl-2-picryl-hydrazyl) radical (from 74.28 to 87.74%). The central formulation of the experimental design (buriti oil 0.30% and emulsifier 0.03%) presented a good performance and can be applied as packaging for foods with a lower water content and that demand protection against oxidation.


2022 ◽  
Vol 3 (1) ◽  
pp. 95-120
Author(s):  
Márcio Araújo de Souza ◽  
Isis Tavares Vilas-Boas ◽  
Jôse Maria Leite-da-Silva ◽  
Pérsia do Nascimento Abrahão ◽  
Barbara E. Teixeira-Costa ◽  
...  

The large-scale industrial use of polysaccharides to obtain energy is one of the most discussed subjects in science. However, modern concepts of biorefinery have promoted the diversification of the use of these polymers in several bioproducts incorporating concepts of sustainability and the circular economy. This work summarizes the major sources of agro-industrial residues, physico-chemical properties, and recent application trends of cellulose, chitin, hyaluronic acid, inulin, and pectin. These macromolecules were selected due to their industrial importance and valuable functional and biological applications that have aroused market interests, such as for the production of medicines, cosmetics, and sustainable packaging. Estimations of global industrial residue production based on major crop data from the United States Department of Agriculture were performed for cellulose content from maize, rice, and wheat, showing that these residues may contain up to 18%, 44%, and 35% of cellulose and 45%, 22%, and 22% of hemicellulose, respectively. The United States (~32%), China (~20%), and the European Union (~18%) are the main countries producing cellulose and hemicellulose-rich residues from maize, rice, and wheat crops, respectively. Pectin and inulin are commonly obtained from fruit (~30%) and vegetable (~28%) residues, while chitin and hyaluronic acid are primarily found in animal waste, e.g., seafood (~3%) and poultry (~4%).


2022 ◽  
Vol 3 (1) ◽  
pp. 83-94
Author(s):  
Esther Somanader ◽  
Roshini Sreenivas ◽  
Golnoosh Siavash ◽  
Nicole Rodriguez ◽  
Tingxiao Gao ◽  
...  

Didymosphenia geminata is a species of freshwater diatom that is known as invasive and is propagating quickly around the world. While invasive species are generally considered a nuisance, this paper attempts to find useful applications for D. geminata in the biomedical field and wastewater remediation. Here, we highlight the polysaccharide-based stalks of D. geminata that enable versatile potential applications and uses as a biopolymer, in drug delivery and wound healing, and as biocompatible scaffolding in cell adhesion and proliferation. Furthermore, this review focuses on how the polysaccharide nature of stalks and their metal-adsorption capacity allows them to have excellent wastewater remediation potential. This work also aims to assess the economic impact of D. geminata, as an invasive species, on its immediate environment. Potential government measures and legislation are recommended to prevent the spread of D. geminata, emphasizing the importance of education and collaboration between stakeholders.


2021 ◽  
Vol 3 (1) ◽  
pp. 59-82
Author(s):  
Marijana Djordjević ◽  
Miljana Djordjević ◽  
Dragana Šoronja-Simović ◽  
Ivana Nikolić ◽  
Zita Šereš

The evidenced relevance of dietary fibers (DF) as functional ingredients shifted the research focus towards their incorporation into gluten-free (GF) bread, aiming to attain the DF contents required for the manifestation of health benefits. Numerous studies addressing the inclusion of DF from diverse sources rendered useful information regarding the role of DF in GF batter’s rheological properties, as well as the end product’s technological and nutritional qualities. The presented comprehensive review aspires to provide insight into the changes in fiber-enriched GF batter’s fundamental rheological properties, and technological, sensory, and nutritional GF bread quality from the insoluble and soluble DF (IDF and SDF) perspective. Different mechanisms for understanding IDF and SDF action on GF batter and bread were discussed. In general, IDF and SDF can enhance, but also diminish, the properties of GF batter and bread, depending on their addition level and the presence of available water in the GF system. However, it was seen that SDF addition provides a more homogenous GF batter structure, leading to bread with higher volumes and softer crumb, compared to IDF. The sensory properties of fiber-enriched GF breads were acceptable in most cases when the inclusion level was up to 7 g/100 g, regardless of the fiber type, enabling the labeling of the bread as a source of fiber.


2021 ◽  
Vol 3 (1) ◽  
pp. 32-58
Author(s):  
Barbara E. Teixeira-Costa ◽  
Cristina T. Andrade

In this review, a historical perspective, functional and application trends of natural polymers used to the development of edible food packaging were presented and discussed. Polysaccharides and proteins, i.e., alginate; carrageenan; chitosan; starch; pea protein, were considered. These natural polymers are important materials obtained from renewable plant, algae and animal sources, as well as from agroindustrial residues. Historically, some of them have been widely used by ancient populations for food packaging until these were replaced by petroleum-based plastic materials after World War II. Nowadays, biobased materials for food packaging have attracted attention. Their use was boosted especially because of the environmental pollution caused by inappropriate disposal of plastic packaging. Biobased materials are welcome to the design of food packaging because they possess many advantages, such as biodegradability, biocompatibility and low toxicity. Depending on the formulation, certain biopolymer-based packaging may present good barrier properties, antimicrobial and antioxidant activities Thus, polysaccharides and proteins can be combined to form diverse composite films with improved mechanical and biological behaviors, making them suitable for packaging of different food products.


2021 ◽  
Vol 3 (1) ◽  
pp. 1-31
Author(s):  
Benjamin Gabriel Poulson ◽  
Qana A. Alsulami ◽  
Abeer Sharfalddin ◽  
Emam. F. El Agammy ◽  
Fouzi Mouffouk ◽  
...  

Due to their unique structural, physical and chemical properties, cyclodextrins and their derivatives have been of great interest to scientists and researchers in both academia and industry for over a century. Many of the industrial applications of cyclodextrins have arisen from their ability to encapsulate, either partially or fully, other molecules, especially organic compounds. Cyclodextrins are non-toxic oligopolymers of glucose that help to increase the solubility of organic compounds with poor aqueous solubility, can mask odors from foul-smelling compounds, and have been widely studied in the area of drug delivery. In this review, we explore the structural and chemical properties of cyclodextrins that give rise to this encapsulation (i.e., the formation of inclusion complexes) ability. This review is unique from others written on this subject because it provides powerful insights into factors that affect cyclodextrin encapsulation. It also examines these insights in great detail. Later, we provide an overview of some industrial applications of cyclodextrins, while emphasizing the role of encapsulation in these applications. We strongly believe that cyclodextrins will continue to garner interest from scientists for many years to come, and that novel applications of cyclodextrins have yet to be discovered.


2021 ◽  
Vol 2 (4) ◽  
pp. 866-877
Author(s):  
Viviana Garces ◽  
Angélica García-Quintero ◽  
Tulio A. Lerma ◽  
Manuel Palencia ◽  
Enrique M. Combatt ◽  
...  

Starch is one of the biopolymers that has been recognized as promising for its application as an eco-friendly substitute for conventional polymers due to its biodegradable nature, low cost, and considerable abundance from renewable vegetal-type resources. In particular, the use of cassava starch as raw material in the manufacture of packaging materials has increased in recent years. Consequently, the analytical study of the quality and features of starch and its derivatives throughout their entire life cycle have gained importance, with non-destructive sample methods being of particular interest. Among these, spectroscopic methods stand out. The aim of this study was evaluated using spectroscopic techniques (i.e., mid-infrared spectroscopy (MIRS) and functional-enhanced derivative spectroscopy (FEDS)) for the monitoring of the effect of the thermal stress of starch in conjunction with computational tools such as density-functional theory (DFT). It is concluded that the FEDS technique in conjunction with DFT calculations can be a useful tool for the high-precision spectral analysis of polymers subjected to small thermal perturbations. In addition, it is demonstrated that small changes produced by thermal stress can be monitored by infrared spectroscopy in conjunction with FEDS at wavenumber range between 3800 and 3000 cm−1, which would allow for the implementation of spectral techniques instead of thermal techniques for out-lab evaluations and for the study of the thermal stress of biomaterials.


2021 ◽  
Vol 2 (4) ◽  
pp. 843-865
Author(s):  
Petra Mischnick ◽  
Kristin Voiges ◽  
Julia Cuers-Dammann ◽  
Inga Unterieser ◽  
Patrick Sudwischer ◽  
...  

The complexity of the substituent distribution in polysaccharide derivatives is discussed and defined. The challenges regarding analytical characterization that results from various interrelated categories of distributions, including molecular weight, chemical composition, and microstructure, are outlined. Due to these convoluted levels of complexity, results should always be interpreted with carefulness. Various analytical approaches which have been applied to starch and cellulose derivatives are recapped, including enzymatic, mass spectrometric, and chromatographic methods. The relation of heterogeneities of first and second order among and along the polysaccharide chains is addressed. Finally, examples of own analytical work on cellulose ethers are presented, including the MS analysis of methyl cellulose (MC) blends and fractionation studies of fully esterified MC, especially its 4-methoxybenzoates by gradient HPLC on normal phase. Preparative fractionation according to the degree of substitution (DS) allows follow-up analysis in order to get more detailed information on the substituent distribution in such sub-fractions.


2021 ◽  
Vol 2 (4) ◽  
pp. 795-816
Author(s):  
Md Salman Shakil ◽  
Kazi Mustafa Mahmud ◽  
Mohammad Sayem ◽  
Mahruba Sultana Niloy ◽  
Sajal Kumar Halder ◽  
...  

Cancer is one of the major causes of death worldwide. Chemotherapeutic drugs have become a popular choice as anticancer agents. Despite the therapeutic benefits of chemotherapeutic drugs, patients often experience side effects and drug resistance. Biopolymers could be used to overcome some of the limitations of chemotherapeutic drugs, as well as be used either as anticancer agents or drug delivery vehicles. Chitosan is a biocompatible polymer derived from chitin. Chitosan, chitosan derivatives, or chitosan nanoparticles have shown their promise as an anticancer agent. Additionally, functionally modified chitosan can be used to deliver nucleic acids, chemotherapeutic drugs, and anticancer agents. More importantly, chitosan-based drug delivery systems improved the efficacy, potency, cytotoxicity, or biocompatibility of these anticancer agents. In this review, we will investigate the properties of chitosan and chemically tuned chitosan derivatives, and their application in cancer therapy.


Sign in / Sign up

Export Citation Format

Share Document