core eudicots
Recently Published Documents


TOTAL DOCUMENTS

53
(FIVE YEARS 19)

H-INDEX

13
(FIVE YEARS 2)

2022 ◽  
Vol 12 ◽  
Author(s):  
Niu Yu ◽  
Haixi Sun ◽  
Jinchang Yang ◽  
Rongsheng Li

Sindora glabra is an economically important tree that produces abundant oleoresin in the trunk. Here, we present a high-quality chromosome-scale assembly of S. glabra genome by combining Illumina HiSeq, Pacific Biosciences sequencing, and Hi-C technologies. The size of S. glabra genome was 1.11 Gb, with a contig N50 of 1.27 Mb and 31,944 predicted genes. This is the first sequenced genome of the subfamily Caesalpinioideae. As a sister taxon to Papilionoideae, S. glabra underwent an ancient genome triplication shared by core eudicots and further whole-genome duplication shared by early-legume in the last 73.3 million years. S. glabra harbors specific genes and expanded genes largely involved in stress responses and biosynthesis of secondary metabolites. Moreover, 59 terpene backbone biosynthesis genes and 64 terpene synthase genes were identified, which together with co-expressed transcription factors could contribute to the diversity and specificity of terpene compounds and high terpene content in S. glabra stem. In addition, 63 disease resistance NBS-LRR genes were found to be unique in S. glabra genome and their expression levels were correlated with the accumulation of terpene profiles, suggesting potential defense function of terpenes in S. glabra. These together provide new resources for understanding genome evolution and oleoresin production.


2021 ◽  
Author(s):  
Chia-Chun Tung ◽  
Shang-Che Kuo ◽  
Chia-Ling Yang ◽  
Chia-En Huang ◽  
Jhong-He Yu ◽  
...  

As the most abundant tissue on Earth, xylem is responsible for lateral growth in plants. Typical xylem has a radial system composed of ray parenchyma cells and an axial system of fusiform cells. In most angiosperms, fusiform cells are a combination of vessel elements for water transportation and libriform fibers for mechanical support, while both functions are performed together by tracheids in other vascular plants. However, little is known about the developmental programs and evolutionary relationships of these xylem cell types. Through both single-cell and laser-capture microdissection transcriptomic profiling, here we demonstrate the developmental lineages of ray and fusiform cells in stem-differentiating xylem across four divergent woody angiosperms. Cross-species analyses of single-cell trajectories reveal highly conserved ray, yet variable fusiform, lineages across angiosperms. Core eudicots Populus trichocarpa and Eucalyptus grandis share nearly identical fusiform lineages. The tracheids in the basal eudicot Trochodendron aralioides, an evolutionarily reversed character, exhibit strong transcriptomic similarity to vessel elements but not libriform fibers, suggesting that water transportation, instead of mechanical support, is the major feature. We also found that the more basal angiosperm Liriodendron chinense has a fusiform lineage distinct from that in core eudicots. This evo-developmental framework provides a comprehensive understanding of the formation of xylem cell lineages across multiple plant species spanning over a hundred million years of evolutionary history.


Author(s):  
Priyanka Sharma ◽  
Valentine Murigneux ◽  
Jasmine Haimovitz ◽  
Catherine J. Nock ◽  
Wei Tian ◽  
...  

SummaryMacadamia, a recently domesticated expanding nut crop in the tropical and subtropical regions of the world, is one of the most economically important genera in the diverse and widely adapted Proteaceae family. All four species of Macadamia are rare in the wild with the most recently discovered, M. jansenii, being endangered. The M. jansenii genome has been used as a model for testing sequencing methods using a wide range of long read sequencing techniques. Here we report a chromosome level genome assembly, generated using a combination of Pacific Biosciences sequencing and Hi-C, comprising 14 pseudo-molecules, with a N50 of 58 Mb and a total 758 Mb genome assembly size of which 56% is repetitive. Completeness assessment revealed that the assembly covered 96.9% of the conserved single copy genes. Annotation predicted 31,591 protein coding genes and allowed the characterization of genes encoding biosynthesis of cyanogenic glycosides, fatty acid metabolism and anti-microbial proteins. Re-sequencing of seven other genotypes confirmed low diversity and low heterozygosity within this endangered species. Important morphological characteristics of this species such as small tree size and high kernel recovery suggest that M. jansenii is an important source of these commercial traits for breeding. As a member of a small group of families that are sister to the core eudicots, this high-quality genome also provides a key resource for evolutionary and comparative genomics studies.


Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1644
Author(s):  
Lingtian Zeng ◽  
Jiao Zhang ◽  
Xuan Wang ◽  
Zhixiong Liu

Common buckwheat (Fagopyrum esculentum) produces distylous flowers with undifferentiated petaloid tepals, which makes it obviously different from flowers of model species. In model species Arabidopsis, APETALA3 (AP3) is expressed in petal and stamen and specifies petal and stamen identities during flower development. Combining with our previous studies, we found that small-scale gene duplication (GD) event and alternative splicing (AS) of common buckwheat AP3 orthologs resulted in FaesAP3_1, FaesAP3_2 and FaesAP3_2a. FaesAP3_2 and FaesAP3_2a were mainly expressed in the stamen of thrum and pin flower. Promoters functional analysis suggested that intense GUS staining was observed in the whole stamen in pFaesAP3_2::GUS transgenic Arabidopsis, while intense GUS staining was observed only in the filament of stamen in pFaesAP3_1::GUS transgenic Arabidopsis. These suggested that FaesAP3_1 and FaesAP3_2 had overlapping functions in specifying stamen filament identity and work together to determine normal stamen development. Additionally, FaesAP3_2 and FaesAP3_2a owned the similar ability to rescue stamen development of Arabidopsis ap3-3 mutant, although AS resulted in a frameshift mutation and consequent omission of the complete PI-derived motif and euAP3 motif of FaesAP3_2a. These suggested that the MIK region of AP3-like proteins was crucial for determining stamen identity, while the function of AP3-like proteins in specifying petal identity was gradually obtained after AP3 Orthologs acquiring a novel C-terminal euAP3 motif during the evolution of core eudicots. Our results also provide a clue to understanding the early evolution of the functional specificity of euAP3-type proteins involving in floral organ development in core eudicots, and also suggested that FaesAP3_2 holds the potential application for biotechnical engineering to develop a sterile male line of F. esculentum.


2021 ◽  
Author(s):  
Shuo Wang ◽  
Chao Shi ◽  
Hao-hong Cai ◽  
Hong-rui Zhang ◽  
Xiao-xuan Long ◽  
...  

Abstract Background: Flowering plants (angiosperms) dominate most global ecosystems today, but their rapid Cretaceous diversification has remained poorly understood ever since Darwin referred to it as an ‘abominable mystery’. Although numerous Cretaceous fossil flowers have been discovered in recent years, most are represented by incomplete charcoalified fragments that do not preserve delicate structures such as complete petals and surface textures, which means that their similarity to living forms is often difficult to discern. The scarcity of information about the ecology of early angiosperms makes it difficult to test hypotheses about the drivers of their diversification. Among other factors, frequent fires in the Cretaceous have been postulated as having possibly facilitated the rise of angiosperms. However, to date no early fossil angiosperms displaying fire-adapted traits have been known, making the role of fire in shaping Cretaceous floras uncertain.Results: We report the discovery of two exquisitely preserved fossil flower species, one identical to the inflorescences of the extant crown eudicot genus Phylica and the other recovered as a sister group to Phylica, both preserved as inclusions in Cretaceous amber from northern Myanmar (~99 Ma). These specialized flower structures, named Phylica piloburmensis sp. nov. and Eophylica priscastellata gen. et sp. nov., were adapted to surviving frequent wildfires, providing the earliest evidence of fire-resistance in angiosperms. The fossils suggest that fire was a significant selective force in Cretaceous angiosperm floras and that adaptations to fire resistance in some eudicot clades have been conserved for at least 99 Ma. This morphological stasis encompasses a range of floral characters, including the production of ‘pseudo-flowers’, and characteristic fruit and pollen architecture. Given its morphological distinctiveness, the Eophylica-Phylica clade represents one of the first well-documented angiosperm ‘living fossil’ genera from the Cretaceous. Conclusion: Our study suggests that core eudicots with specialised flower morphology displaying hallmarks of fire resistance and identical to those of the extant south African genus Phylica, had originated by the mid-Cretaceous (~99 Ma). Palaeoenvironmental reconstructions indicate that these plants lived in conditions similar to those of present-day southern Africa where 70% of taxa survive frequent burning, and that fire resistance was probably widespread in the fire-prone Cretaceous. The results also provide new insights into the biogeographic origin of at least one element of the highly endemic Greater Cape Region biodiversity hotspot flora biota.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sarita Muñoz-Gómez ◽  
Harold Suárez-Baron ◽  
Juan F. Alzate ◽  
Favio González ◽  
Natalia Pabón-Mora

Flavonoids, carotenoids, betalains, and chlorophylls are the plant pigments responsible for floral color. Anthocyanins, a class of flavonoids, are largely responsible for the red, purple, pink, and blue colors. R2R3-MYB genes belonging to subgroup 6 (SG6) are the upstream regulatory factors of the anthocyanin biosynthetic pathway. The canonical members of these genes in Arabidopsis include AtMYB75, AtMYB90, AtMYB113, and AtMYB114. The Aristolochiaceae is an angiosperm lineage with diverse floral groundplans and perianth colors. Saruma henryi exhibits a biseriate perianth with green sepals and yellow petals. All other genera have sepals only, with colors ranging from green (in Lactoris) to a plethora of yellow to red and purple mixtures. Here, we isolated and reconstructed the SG6 R2R3-MYB gene lineage evolution in angiosperms with sampling emphasis in Aristolochiaceae. We found numerous species-specific duplications of this gene lineage in core eudicots and local duplications in Aristolochiaceae for Saruma and Asarum. Expression of SG6 R2R3-MYB genes examined in different developmental stages and plant organs of four Aristolochiaceae species, largely overlaps with red and purple pigments, suggesting a role in anthocyanin and flavonoid synthesis and accumulation. A directed RNA-seq analysis corroborated our RT-PCR analyses, by showing that these structural enzymes activate during perianth development in Aristolochia fimbriata and that the regulatory genes are expressed in correlation with color phenotype. Finally, the reconstruction of the flavonoid and anthocyanin metabolic pathways using predicted peptides from transcriptomic data show that all pivotal enzymes are present in the analyzed species. We conclude that the regulatory genes as well as the biosynthetic pathway are largely conserved across angiosperms. In addition, the Aristolochiaceae emerges as a remarkable group to study the genetic regulatory network for floral color, as their members exhibit an outstanding floral diversity with elaborate color patterns and the genetic complement for SG6 R2R3-MYB genes is simpler than in core eudicot model species.


Author(s):  
Miho Stephanie Kitazawa

AbstractFloral phyllotaxis is a relatively robust phenotype; trimerous and pentamerous arrangements are widely observed in monocots and core eudicots. Conversely, it also shows variability in some angiosperm clades such as ‘ANA’ grade (Amborellales, Nymphaeales, and Austrobaileyales), magnoliids, and Ranunculales. Regardless of the phylogenetic relationship, however, phyllotactic pattern formation appears to be a common process. What are the causes of the variability in floral phyllotaxis and how has the variation of floral phyllotaxis contributed to floral diversity? In this review, I summarize recent progress in studies on two related fields to develop answers to these questions. First, it is known that molecular and cellular stochasticity are inevitably found in biological systems, including plant development. Organisms deal with molecular stochasticity in several ways, such as dampening noise through gene networks or maintaining function through cellular redundancy. Recent studies on molecular and cellular stochasticity suggest that stochasticity is not always detrimental to plants and that it is also essential in development. Second, studies on vegetative and inflorescence phyllotaxis have shown that plants often exhibit variability and flexibility in phenotypes. Three types of phyllotaxis variations are observed, namely, fluctuation around the mean, transition between regular patterns, and a transient irregular organ arrangement called permutation. Computer models have demonstrated that stochasticity in the phyllotactic pattern formation plays a role in pattern transitions and irregularities. Variations are also found in the number and positioning of floral organs, although it is not known whether such variations provide any functional advantages. Two ways of diversification may be involved in angiosperm floral evolution: precise regulation of organ position and identity that leads to further specialization of organs and organ redundancy that leads to flexibility in floral phyllotaxis.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Ping-Li Liu ◽  
Xi Zhang ◽  
Jian-Feng Mao ◽  
Yan-Ming Hong ◽  
Ren-Gang Zhang ◽  
...  

Abstract Background Tetracentron sinense is an endemic and endangered deciduous tree. It belongs to the Trochodendrales, one of four early diverging lineages of eudicots known for having vesselless secondary wood. Sequencing and resequencing of the T. sinense genome will help us understand eudicot evolution, the genetic basis of tracheary element development, and the genetic diversity of this relict species. Results Here, we report a chromosome-scale assembly of the T. sinense genome. We assemble the 1.07 Gb genome sequence into 24 chromosomes and annotate 32,690 protein-coding genes. Phylogenomic analyses verify that the Trochodendrales and core eudicots are sister lineages and showed that two whole-genome duplications occurred in the Trochodendrales approximately 82 and 59 million years ago. Synteny analyses suggest that the γ event, resulting in paleohexaploidy, may have only happened in core eudicots. Interestingly, we find that vessel elements are present in T. sinense, which has two orthologs of AtVND7, the master regulator of vessel formation. T. sinense also has several key genes regulated by or regulating TsVND7.2 and their regulatory relationship resembles that in Arabidopsis thaliana. Resequencing and population genomics reveals high levels of genetic diversity of T. sinense and identifies four refugia in China. Conclusions The T. sinense genome provides a unique reference for inferring the early evolution of eudicots and the mechanisms underlying vessel element formation. Population genomics analysis of T. sinense reveals its genetic diversity and geographic structure with implications for conservation.


Sign in / Sign up

Export Citation Format

Share Document