The structure of β-lactamases

The β-lactamases are widely distributed in both Gram-positive and Gram-negative bacteria. They all inactivate penicillins and cephalosporins by opening the β-lactam ring. Many varieties of the enzyme can be distinguished on the basis of their catalytic and molecular properties, but only amino acid sequence determination gives information upon which a molecular phylogeny can be based. The present evidence suggests that the β-lactamases have a polyphyletic origin. All the β-lactamases of currently known amino acid sequence belong to one homology group, here called class A enzymes. Class B consists of the mechanistically distinct Bacillus cereus β-lactamase II, which preliminary partial sequence analysis suggests to be structurally unrelated to the class A enzymes. It is predicted that sequence analysis will show that further classes will need to be created to account for particular β-lactamases of distinctive molecular and mechanistic properties.

1998 ◽  
Vol 62 (4) ◽  
pp. 1079-1093 ◽  
Author(s):  
Colette Goffin ◽  
Jean-Marie Ghuysen

SUMMARY The monofunctional penicillin-binding dd-peptidases and penicillin-hydrolyzing serine β-lactamases diverged from a common ancestor by the acquisition of structural changes in the polypeptide chain while retaining the same folding, three-motif amino acid sequence signature, serine-assisted catalytic mechanism, and active-site topology. Fusion events gave rise to multimodular penicillin-binding proteins (PBPs). The acyl serine transferase penicillin-binding (PB) module possesses the three active-site defining motifs of the superfamily; it is linked to the carboxy end of a non-penicillin-binding (n-PB) module through a conserved fusion site; the two modules form a single polypeptide chain which folds on the exterior of the plasma membrane and is anchored by a transmembrane spanner; and the full-size PBPs cluster into two classes, A and B. In the class A PBPs, the n-PB modules are a continuum of diverging sequences; they possess a five-motif amino acid sequence signature, and conserved dicarboxylic amino acid residues are probably elements of the glycosyl transferase catalytic center. The PB modules fall into five subclasses: A1 and A2 in gram-negative bacteria and A3, A4, and A5 in gram-positive bacteria. The full-size class A PBPs combine the required enzymatic activities for peptidoglycan assembly from lipid-transported disaccharide-peptide units and almost certainly prescribe different, PB-module specific traits in peptidoglycan cross-linking. In the class B PBPs, the PB and n-PB modules cluster in a concerted manner. A PB module of subclass B2 or B3 is linked to an n-PB module of subclass B2 or B3 in gram-negative bacteria, and a PB module of subclass B1, B4, or B5 is linked to an n-PB module of subclass B1, B4, or B5 in gram-positive bacteria. Class B PBPs are involved in cell morphogenesis. The three motifs borne by the n-PB modules are probably sites for module-module interaction and the polypeptide stretches which extend between motifs 1 and 2 are sites for protein-protein interaction. The full-size class B PBPs are an assortment of orthologs and paralogs, which prescribe traits as complex as wall expansion and septum formation. PBPs of subclass B1 are unique to gram-positive bacteria. They are not essential, but they represent an important mechanism of resistance to penicillin among the enterococci and staphylococci. Natural evolution and PBP- and β-lactamase-mediated resistance show that the ability of the catalytic centers to adapt their properties to new situations is limitless. Studies of the reaction pathways by using the methods of quantum chemistry suggest that resistance to penicillin is a road of no return.


2020 ◽  
Vol 85 (3) ◽  
pp. 626-629
Author(s):  
Hisashi Muramatsu ◽  
Hiroki Maguchi ◽  
Taisuke Harada ◽  
Takehiro Kashiwagi ◽  
Chul-Sa Kim ◽  
...  

ABSTRACT Here, we report the identification of the gene encoding a novel enzyme, 3-(5-oxo-2-thioxoimidazolidin-4-yl) propionic acid desulfhydrase, in Burkholderia sp. HME13. The enzyme converts 3-(5-oxo-2-thioxoimidazolidin-4-yl) propionic acid and H2O to 3-(2,5-dioxoimidazolidin-4-yl) propionic acid and H2S. Amino acid sequence analysis of the enzyme indicates that it belongs to the DUF917 protein family, which consists of proteins of unknown function.


1988 ◽  
Vol 263 (25) ◽  
pp. 12559-12563
Author(s):  
T L Wasmoen ◽  
M P Bell ◽  
D A Loegering ◽  
G J Gleich ◽  
F G Prendergast ◽  
...  

1980 ◽  
Vol 187 (3) ◽  
pp. 863-874 ◽  
Author(s):  
D M Johnson ◽  
J Gagnon ◽  
K B Reid

The serine esterase factor D of the complement system was purified from outdated human plasma with a yield of 20% of the initial haemolytic activity found in serum. This represented an approx. 60 000-fold purification. The final product was homogeneous as judged by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis (with an apparent mol.wt. of 24 000), its migration as a single component in a variety of fractionation procedures based on size and charge, and its N-terminal amino-acid-sequence analysis. The N-terminal amino acid sequence of the first 36 residues of the intact molecule was found to be homologous with the N-terminal amino acid sequences of the catalytic chains of other serine esterases. Factor D showed an especially strong homology (greater than 60% identity) with rat ‘group-specific protease’ [Woodbury, Katunuma, Kobayashi, Titani, & Neurath (1978) Biochemistry 17, 811-819] over the first 16 amino acid residues. This similarity is of interest since it is considered that both enzymes may be synthesized in their active, rather than zymogen, forms. The three major CNBr fragments of factor D, which had apparent mol.wts. of 15 800, 6600 and 1700, were purified and then aligned by N-terminal amino acid sequence analysis and amino acid analysis. By using factor D labelled with di-[1,3-14C]isopropylphosphofluoridate it was shown that the CNBr fragment of apparent mol.wt. 6600, which is located in the C-terminal region of factor D, contained the active serine residue. The amino acid sequence around this residue was determined.


Sign in / Sign up

Export Citation Format

Share Document