Sensory and non-sensory visual disorders in man and monkey

The posterior third of the cerebral cortex in monkeys consists of a patchwork of visual areas in each of which there is a ‘map’ of the retina. The details of the ‘map’ vary considerably from one area to another and one notable variation concerns the optimal visual feature to which the cells respond. Orientation, disparity, colour and movement are emphasized in separate areas that appear to be concerned with sensory analysis. Their existence and the possibility that brain damage is occasionally restricted chiefly to one such area may explain the rare highly selective visual sensory impairments that can follow posterior cerebral damage in man. Other areas are notable for having little or no retinotopic representation. Here the cells may have huge receptive fields and complex trigger features. When such regions are removed, the animal’s visual sensory abilities are intact but its recognition of patterns and objects is not. This condition resembles human visual agnosia.

1998 ◽  
Vol 06 (03) ◽  
pp. 265-279 ◽  
Author(s):  
Shimon Edelman

The paper outlines a computational approach to face representation and recognition, inspired by two major features of biological perceptual systems: graded-profile overlapping receptive fields, and object-specific responses in the higher visual areas. This approach, according to which a face is ultimately represented by its similarities to a number of reference faces, led to the development of a comprehensive theory of object representation in biological vision, and to its subsequent psychophysical exploration and computational modeling.


1996 ◽  
Vol 93 (6) ◽  
pp. 2382-2386 ◽  
Author(s):  
E. A. DeYoe ◽  
G. J. Carman ◽  
P. Bandettini ◽  
S. Glickman ◽  
J. Wieser ◽  
...  

1981 ◽  
Vol 45 (3) ◽  
pp. 397-416 ◽  
Author(s):  
J. F. Baker ◽  
S. E. Petersen ◽  
W. T. Newsome ◽  
J. M. Allman

1. The response properties of 354 single neurons in the medial (M), dorsomedial (DM), dorsolateral (DL), and middle temporal (MT) visual areas were studied quantitatively with bar, spot, and random-dot stimuli in chronically implanted owl monkeys with fixed gaze. 2. A directionality index was computed to compare the responses to stimuli in the optimal direction with the responses to the opposing direction of movement. The greater the difference between opposing directions, the higher the index. MT cells had much higher direction indices to moving bars than cells in DL, DM, and M. 3. A tuning index was computed for each cell to compare the responses to bars moving in the optimal direction, or flashed in the optimal orientation, with the responses in other directions or orientations within +/- 90 degrees. Cells in all four areas were more sharply tuned to the orientation of stationary flashed bars than to moving bars, although a few cells (9/92( were unresponsive in the absence of movement. DM cells tended to be more sharply tuned to moving bars than cells in the other areas. 4. Directionality in DM, DL, and MT was relatively unaffected by the use of single-spot stimuli instead of bars; tuning in all four areas was broader to spots than bars. 5. Moving arrays of randomly spaced spots were more strongly excitatory than bar stimuli for many neurons in MT (16/31 cells). These random-dot stimuli were also effective in M, but evoked no response or weak responses from most cells in DM and DL. 6. The best velocities of movement were usually in the range of 10-100 degrees/s, although a few cells (22/227), primarily in MT (14/69 cells), preferred higher velocities. 7. Receptive fields of neurons in all four areas were much larger than striate receptive fields. Eccentricity was positively correlated with receptive-field size (r = 0.62), but was not correlated with directionality index, tuning index, or best velocity. 8. The results support the hypothesis that there are specializations of function among the cortical visual areas.


2010 ◽  
Vol 104 (2) ◽  
pp. 960-971 ◽  
Author(s):  
Joonyeol Lee ◽  
John H. R. Maunsell

It remains unclear how attention affects the tuning of individual neurons in visual cerebral cortex. Some observations suggest that attention preferentially enhances responses to low contrast stimuli, whereas others suggest that attention proportionally affects responses to all stimuli. Resolving how attention affects responses to different stimuli is essential for understanding the mechanism by which it acts. To explore the effects of attention on stimuli of different contrasts, we recorded from individual neurons in the middle temporal visual area (MT) of rhesus monkeys while shifting their attention between preferred and nonpreferred stimuli within their receptive fields. This configuration results in robust attentional modulation that makes it possible to readily distinguish whether attention acts preferentially on low contrast stimuli. We found no evidence for greater enhancement of low contrast stimuli. Instead, the strong attentional modulations were well explained by a model in which attention proportionally enhances responses to stimuli of all contrasts. These data, together with observations on the effects of attention on responses to other stimulus dimensions, suggest that the primary effect of attention in visual cortex may be to simply increase the strength of responses to all stimuli by the same proportion.


i-Perception ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 204166952093840
Author(s):  
Li Zhaoping

Consider a gray field comprising pairs of vertically aligned dots; in each pair, one dot is white the other black. When viewed in a peripheral visual field, these pairs appear horizontally aligned. By the Central-Peripheral Dichotomy, this flip tilt illusion arises because top-down feedback from higher to lower visual cortical areas is too weak or absent in the periphery to veto confounded feedforward signals from the primary visual cortex (V1). The white and black dots in each pair activate, respectively, on and off subfields of V1 neural receptive fields. However, the sub-fields’ orientations, and the preferred orientations, of the most activated neurons are orthogonal to the dot alignment. Hence, V1 reports the flip tilt to higher visual areas. Top-down feedback vetoes such misleading reports, but only in the central visual field.


2006 ◽  
Vol 95 (4) ◽  
pp. 2602-2616 ◽  
Author(s):  
Jason M. Samonds ◽  
Zhiyi Zhou ◽  
Melanie R. Bernard ◽  
A. B. Bonds

We explored how contour information in primary visual cortex might be embedded in the simultaneous activity of multiple cells recorded with a 100-electrode array. Synchronous activity in cat visual cortex was more selective and predictable in discriminating between drifting grating and concentric ring stimuli than changes in firing rate. Synchrony was found even between cells with wholly different orientation preferences when their receptive fields were circularly aligned, and membership in synchronous groups was orientation and curvature dependent. The existence of synchrony between cocircular cells reinforces its role as a general mechanism for contour integration and shape detection as predicted by association field concepts. Our data suggest that cortical synchrony results from common and synchronous input from earlier visual areas and that it could serve to shape extrastriate response selectivity.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Alejandro Gonzalez-Vazquez ◽  
Ana-Karina Aguilar-Peralta ◽  
Constantino Tomas-Sanchez ◽  
Victor-Manuel Blanco-Alvarez ◽  
Daniel Martinez-Fong ◽  
...  

Oxygen deprivation in newborns leads to hypoxic-ischemic encephalopathy, whose hallmarks are oxidative/nitrosative stress, energetic metabolism alterations, nutrient deficiency, and motor behavior disability. Zinc and taurine are known to protect against hypoxic-ischemic brain damage in adults and neonates. However, the combined effect of prophylactic zinc administration and therapeutic taurine treatment on intrauterine ischemia- (IUI-) induced cerebral damage remains unknown. The present work evaluated this issue in male pups subjected to transient IUI (10 min) at E17 and whose mothers received zinc from E1 to E16 and taurine from E17 to postnatal day 15 (PND15) via drinking water. We assessed motor alterations, nitrosative stress, lipid peroxidation, and the antioxidant system comprised of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). Enzymes of neuronal energetic pathways, such as aspartate aminotransferase (AST), alanine aminotransferase (ALT), and lactate dehydrogenase (LDH), were also evaluated. The hierarchization score of the protective effect of pharmacological strategies (HSPEPS) was used to select the most effective treatment. Compared with the IUI group, zinc, alone or combined with taurine, improved motor behavior and reduced nitrosative stress by increasing SOD, CAT, and GPx activities and decreasing the GSSG/GSH ratio in the cerebral cortex and hippocampus. Taurine alone increased the AST/ALT, LDH/ALT, and AST/LDH ratios in the cerebral cortex, showing improvement of the neural bioenergetics system. This result suggests that taurine improves pyruvate, lactate, and glutamate metabolism, thus decreasing IUI-caused cerebral damage and relieving motor behavior impairment. Our results showed that taurine alone or in combination with zinc provides neuroprotection in the IUI rat model.


2019 ◽  
Author(s):  
Kun Wang ◽  
Julian Hinz ◽  
Yue Zhang ◽  
Tod R. Thiele ◽  
Aristides B Arrenberg

AbstractNon-cortical visual areas in vertebrate brains extract different stimulus features, such as motion, object size and location, to support behavioural tasks. The optic tectum and pretectum, two primary visual areas, are thought to fulfil complementary biological functions in zebrafish to support prey capture and optomotor stabilisation behaviour. However, the adaptations of these brain areas to behaviourally relevant stimulus statistics are unknown. Here, we used calcium imaging to characterize the receptive fields of 1,926 motion-sensitive neurons in diencephalon and midbrain. We show that many caudal pretectal neurons have large receptive fields (RFs), whereas RFs of tectal neurons are smaller and mostly size-selective. RF centres of large-size RF neurons in the pretectum are predominantly located in the lower visual field, while tectal neurons sample the upper-nasal visual field more densely. This tectal visual field sampling matches the expected prey item locations, suggesting that the tectal magnification of the upper-nasal visual field might be an adaptation to hunting behaviour. Finally, we probed optomotor responsiveness and found that even relatively small stimuli drive optomotor swimming, if presented in the lower-temporal visual field, suggesting that the pretectum preferably samples information from this region on the ground to inform optomotor behaviour. Our characterization of the parallel processing channels for non-cortical motion feature extraction provides a basis for further investigation into the sensorimotor transformations of the zebrafish brain and its adaptations to habitat and lifestyle.


Sign in / Sign up

Export Citation Format

Share Document