taurine treatment
Recently Published Documents


TOTAL DOCUMENTS

67
(FIVE YEARS 19)

H-INDEX

15
(FIVE YEARS 2)

Author(s):  
Amal Ghanim ◽  
Mahmoud Farag ◽  
Mahitab Anwar ◽  
Nada Ali ◽  
Mohammed Hawas ◽  
...  

Abstract: This study aimed to investigate the molecular mechanisms by which taurine exerts its reno-protective effects in thioacetamide (TAA)-induced kidney injury in rats. Rats received taurine (100 mg/kg daily, intraperitoneally) either from day 1 of TAA injection (250 mg/kg twice weekly for 6 weeks) or after 6 weeks of TAA administration. Taurine treatment, either concomitant or later as a therapy, restored kidney functions, reduced BUN, creatinine, MDA, and increased renal levels of SOD and reversed the increase of KIM-1 and NGAL caused by TAA. Taurine treatment also led to a significant rise in Nrf2, HO-1, and NQO-1 levels, with significant suppression of ERK 1/2, NF-κB, and TNFα gene expressions, and IL-18 and TNFα protein levels compared to those in TAA kidney-injured rats. Taurine exhibited reno-protective potential in TAA-induced kidney injury through its anti-oxidant and anti-inflammatory effects. Taurine anti-oxidant activity is accredited to its effect on Nrf-2 induction and subsequent activation of HO-1 and NQO-1. In addition, taurine exerts its anti-inflammatory effect via regulating NF-κB transcription and subsequent production of pro-inflammatory mediators via MAPK signaling regulation.


Nutrients ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 3686
Author(s):  
Ashley Jazzar ◽  
Danielle Jacques ◽  
Ghassan Bkaily

Although insulin-induced cardiac hypertrophy is reported, very little information is available on the hypertrophic effect of insulin on ventricular cardiomyocytes and the regulation of sodium and calcium homeostasis. Taurine is a non-essential amino acid synthesized by cardiomyocytes and the brain and is present in low quantities in many foods, particularly seafood. The purpose of this study was to investigate whether chronic exposure to insulin induces hypertrophy of ventricular cardiomyocytes that are associated with changes in Na+ and Ca2+ homeostasis and whether taurine pre-treatment prevents these effects. Our results showed that chronic treatment with insulin leads to cardiomyocyte hypertrophy that is associated with an increase in basal intracellular Na+ and Ca2+ levels. Furthermore, long-term taurine treatment prevents morphological and ionic remodeling induced by insulin. In addition, blocking the Na+-taurine co-transporter prevented the taurine antihypertrophic effect. Finally, the insulin-induced remodeling of cardiomyocytes was associated with a decrease in the ratio of phospho-CREB (pCREB) to total cAMP response element binding protein (CREB); taurine prevented this effect. In conclusion, our results show that insulin induces ventricular cardiomyocyte hypertrophy via downregulation of the pCREB/tCREB level and that chronic taurine treatment prevents this effect.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Jing Zhou ◽  
Yi Lu ◽  
Wei Wu ◽  
Yunhai Feng

Abstract Background Allergic rhinitis (AR) is one of the most widespread immune conditions worldwide. However, common treatments often present with significant side effects or are cost-prohibitive for much of the population. A plethora of treatments have been used for the treatment of AR including antihistamines, steroids, and immune modulators. Among the treatments which have shown potential for efficacy in treating AR with a minimum of side effects but remains understudied is the conditionally essential amino acid taurine. Taurine has been previously shown to reduce AR symptoms. Here, we examine the role of taurine in modulating T regulatory cells, modulating the cytokine response in AR, and restoring healthy nasal mucosa. Methods Blood samples from 20 healthy donors and 20 AR patients were compared for CD4+CD25+FoxP3+ T regulatory (Treg) cell population percentage, cytokine release, and STAT1 signaling with and without taurine treatment or IL-35 neutralization. An OVA-induced AR mouse model was administered vehicle, taurine, or taurine plus an IL-35 neutralizing antibody and assayed for sneezing frequency, inflammatory cytokine response, nasal mucosa goblet cell density, and T regulatory cell percentage. CD4+ cells were further examined for cytokine release, STAT1 phosphorylation, and response to an anti-IL-35 antibody with and without a STAT1 inhibitor. Results Comparison of blood from normal donors and AR patients showed a reduction in CD4+CD25+FoxP3+ Treg cells in AR patients and a strong correlation between Treg percentage and IL-35 release. A similar pattern of Treg suppression was found in untreated AR mice when compared to normal control mice wherein there was a reduction in Treg percentage and a corresponding decrease in IL-35 release. AR mice also demonstrated increased sneezing frequency, an infiltration of goblet cell in nasal mucosa, and a reduction in IL-35 release from CD4+ cells. Conversely, IL-4, IL-5, and IL-13 secretion from CD4+ cells were increased in AR model mice, as was STAT1 phosphorylation. When AR mice were treated with taurine, sneezing frequency and nasal mucosa goblet cell content were reduced while Treg abundance was increased to that of normal mice. Accordingly, IL-35 release was restored, while IL-4, IL-5, and IL-13 secretion from CD4+ cells were suppressed. Likewise, STAT1 phosphorylation was inhibited with taurine treatment. Taurine-treated mice also given an IL-35 neutralizing antibody exhibited AR pathology including frequent sneezing and high nasal goblet cell content while retaining a restoration of Tregs. Furthermore, murine AR model CD4+ cells exposed to recombinant IL-35 responded with a reduction in inflammatory cytokine release and a decrease in STAT1 phosphorylation, mimicking the effect of taurine treatment. Conclusions Taurine induces release of IL-35 in AR; IL-35 promotes the production of CD4+CD25+FoxP3+ Treg cells via a STAT1-dependent pathway. The restoration of Treg populations by taurine normalizes the inflammatory response, reduces AR symptomology, and reduces histopathologic signs of AR.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Alejandro Gonzalez-Vazquez ◽  
Ana-Karina Aguilar-Peralta ◽  
Constantino Tomas-Sanchez ◽  
Victor-Manuel Blanco-Alvarez ◽  
Daniel Martinez-Fong ◽  
...  

Oxygen deprivation in newborns leads to hypoxic-ischemic encephalopathy, whose hallmarks are oxidative/nitrosative stress, energetic metabolism alterations, nutrient deficiency, and motor behavior disability. Zinc and taurine are known to protect against hypoxic-ischemic brain damage in adults and neonates. However, the combined effect of prophylactic zinc administration and therapeutic taurine treatment on intrauterine ischemia- (IUI-) induced cerebral damage remains unknown. The present work evaluated this issue in male pups subjected to transient IUI (10 min) at E17 and whose mothers received zinc from E1 to E16 and taurine from E17 to postnatal day 15 (PND15) via drinking water. We assessed motor alterations, nitrosative stress, lipid peroxidation, and the antioxidant system comprised of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). Enzymes of neuronal energetic pathways, such as aspartate aminotransferase (AST), alanine aminotransferase (ALT), and lactate dehydrogenase (LDH), were also evaluated. The hierarchization score of the protective effect of pharmacological strategies (HSPEPS) was used to select the most effective treatment. Compared with the IUI group, zinc, alone or combined with taurine, improved motor behavior and reduced nitrosative stress by increasing SOD, CAT, and GPx activities and decreasing the GSSG/GSH ratio in the cerebral cortex and hippocampus. Taurine alone increased the AST/ALT, LDH/ALT, and AST/LDH ratios in the cerebral cortex, showing improvement of the neural bioenergetics system. This result suggests that taurine improves pyruvate, lactate, and glutamate metabolism, thus decreasing IUI-caused cerebral damage and relieving motor behavior impairment. Our results showed that taurine alone or in combination with zinc provides neuroprotection in the IUI rat model.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yongyan Deng ◽  
Hongjin Li ◽  
Yujiao Tang

Aim. Taurine is believed to have antioxidant properties and has been implicated in the treatment of neurodegenerative disease, atherosclerosis, coronary heart disease, and prostate cancer. This research focused on taurine inhibition effects of expression related to migration and epithelial-mesenchymal transition- (EMT-) A549 study on related genes of human being non-small-cell lung cancer. Methods. MTT assays assessed cell viability and a RadiusTM assay showed that taurine also inhibited the lung cancer cell migration. Using RT-PCR and Western blot, the migration and EMT markers were identified and evaluated. Results. We found that taurine significantly decreased the expression of migration markers matrix metallopeptidase 9 (MMP-9) and vascular endothelial growth factor (VEGF). In contrast, TIMP metallopeptidase inhibitor 1 (TIMP-1) and TIMP metallopeptidase inhibitor 2 (TIMP-2) expressions were increased with taurine treatment. In addition, we found an association between taurine treatment and the expression of EMT markers. The expression of epithelial marker E-cadherin and the mesenchymal marker N-cadherin TWIST-1 was decreased, but the expression of zinc finger protein SNAIL-1 and E-zinc finger homeobox 1 (ZEB-1) was increased. Conclusion. Taken together, our study strongly suggests the therapeutic significance of taurine, which possesses antimigration activity and induces EMT markers expression in lung cancer cells.


Metabolism ◽  
2021 ◽  
pp. 154701
Author(s):  
Daniele M. Guizoni ◽  
Israelle N. Freitas ◽  
Jamaira A. Victorio ◽  
Isabela R. Possebom ◽  
Thiago R. Araujo ◽  
...  

2021 ◽  
Vol 62 (1) ◽  
pp. 21
Author(s):  
Eun Sun Jang ◽  
Sung Ho Hwang ◽  
Jin-Wook Kim ◽  
Sook-Hyang Jeong

2020 ◽  
Author(s):  
Jing Zhou ◽  
Yi Lu ◽  
Wei Wu ◽  
Yunhai Feng

Abstract Background: Allergic rhinitis (AR) is one of the most widespread immune conditions worldwide. However, common treatments often present with significant side effects or are cost-prohibitive for much of the population. A plethora of treatments have been used for the treatment of AR including antihistamines, steroids, and immune modulators. Among the treatments which have shown potential for efficacy in treating AR with a minimum of side effects but remains understudied is the conditionally essential amino acid taurine. Taurine has been previously shown to reduce AR symptoms. Here, we examine the role of taurine in modulating T regulatory cells, modulating the cytokine response in AR, and restoring healthy nasal mucosa.Methods: Blood samples from 20 healthy donors and 20 AR patients were compared for CD4+CD25+FoxP3+ T regulatory (Treg) cell population percentage, cytokine release, and STAT1 signaling with and without taurine treatment or IL-35 neutralization. An OVA-induced AR mouse model was administered vehicle, taurine, or taurine plus an IL-35 neutralizing antibody and assayed for sneezing frequency, inflammatory cytokine response, nasal mucosa goblet cell density, and T regulatory cell percentage. CD4+ cells were further examined for cytokine release, STAT1 phosphorylation, and response to an anti-IL-35 antibody with and without a STAT1 inhibitor. Results: Comparison of blood from normal donors and AR patients showed a reduction in CD4+CD25+FoxP3+ Treg cells in AR patients and a strong correlation between Treg percentage and IL-35 release. A similar pattern of Treg suppression was found in untreated AR mice when compared to normal control mice wherein there was a reduction in Treg percentage and a corresponding decrease in IL-35 release. AR mice also demonstrated increased sneezing frequency, an infiltration of goblet cell in nasal mucosa, and a reduction in IL-35 release from CD4+ cells. Conversely, IL-4, IL-5, and IL-13 secretion from CD4+ cells were increased in AR model mice, as was STAT1 phosphorylation. When AR mice were treated with taurine, sneezing frequency and nasal mucosa goblet cell content were reduced while Treg abundance was increased to that of normal mice. Accordingly, IL-35 release was restored, while IL-4, IL-5, and IL-13 secretion from CD4+ cells were suppressed. Likewise, STAT1 phosphorylation was inhibited with taurine treatment. Taurine-treated mice also given an IL-35 neutralizing antibody exhibited AR pathology including frequent sneezing and high nasal goblet cell content while retaining a restoration of Tregs. Furthermore, murine AR model CD4+ cells exposed to recombinant IL-35 responded with a reduction in inflammatory cytokine release and a decrease in STAT1 phosphorylation, mimicking the effect of taurine treatment. Conclusions: Taurine induces release of IL-35 in AR; IL-35 promotes the production of CD4+CD25+FoxP3+ Treg cells via a STAT1-dependent pathway. The restoration of Treg populations by taurine normalizes the inflammatory response, reduces AR symptomology, and reduces histopathologic signs of AR.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Se Jong Oh ◽  
Hae-June Lee ◽  
Ye Ji Jeong ◽  
Kyung Rok Nam ◽  
Kyung Jun Kang ◽  
...  

Abstract Alzheimer’s disease (AD) is a chronic neurodegenerative disorder and the leading cause of dementia, but therapeutic treatment options are limited. Taurine has been reported to have neuroprotective properties against dementia, including AD. The present study aimed to investigate the treatment effect of taurine in AD mice by functional molecular imaging. To elucidate glutamate alterations by taurine, taurine was administered to 5xFAD transgenic mice from 2 months of age, known to apear amyloid deposition. Then, we performed glutamate positron emission tomography (PET) imaging studies for three groups (wild-type, AD, and taurine-treated AD, n = 5 in each group). As a result, brain uptake in the taurine-treated AD group was 31–40% higher than that in the AD group (cortex: 40%, p < 0.05; striatum: 32%, p < 0.01; hippocampus: 36%, p < 0.01; thalamus: 31%, p > 0.05) and 3–14% lower than that in the WT group (cortex: 10%, p > 0.05; striatum: 15%, p > 0.05; hippocampus: 14%, p > 0.05; thalamus: 3%, p > 0.05). However, we did not observe differences in Aβ pathology between the taurine-treated AD and AD groups in immunohistochemistry experiments. Our results reveal that although taurine treatment did not completely recover the glutamate system, it significantly increased metabolic glutamate receptor type 5 brain uptake. Therefore, taurine has therapeutic potential against AD.


Sign in / Sign up

Export Citation Format

Share Document