scholarly journals The role of the fusiform face area in social cognition: implications for the pathobiology of autism

2003 ◽  
Vol 358 (1430) ◽  
pp. 415-427 ◽  
Author(s):  
Robert T. Schultz ◽  
David J. Grelotti ◽  
Ami Klin ◽  
Jamie Kleinman ◽  
Christiaan Van der Gaag ◽  
...  

A region in the lateral aspect of the fusiform gyrus (FG) is more engaged by human faces than any other category of image. It has come to be known as the ‘fusiform face area’ (FFA). The origin and extent of this specialization is currently a topic of great interest and debate. This is of special relevance to autism, because recent studies have shown that the FFA is hypoactive to faces in this disorder. In two linked functional magnetic resonance imaging (fMRI) studies of healthy young adults, we show here that the FFA is engaged by a social attribution task (SAT) involving perception of human–like interactions among three simple geometric shapes. The amygdala, temporal pole, medial prefrontal cortex, inferolateral frontal cortex and superior temporal sulci were also significantly engaged. Activation of the FFA to a task without faces challenges the received view that the FFA is restricted in its activities to the perception of faces. We speculate that abstract semantic information associated with faces is encoded in the FG region and retrieved for social computations. From this perspective, the literature on hypoactivation of the FFA in autism may be interpreted as a reflection of a core social cognitive mechanism underlying the disorder.

2016 ◽  
Vol 28 (9) ◽  
pp. 1345-1357 ◽  
Author(s):  
Merim Bilalić

The fusiform face area (FFA) is considered to be a highly specialized brain module because of its central importance for face perception. However, many researchers claim that the FFA is a general visual expertise module that distinguishes between individual examples within a single category. Here, I circumvent the shortcomings of some previous studies on the FFA controversy by using chess stimuli, which do not visually resemble faces, together with more sensitive methods of analysis such as multivariate pattern analysis. I also extend the previous research by presenting chess positions, complex scenes with multiple objects, and their interrelations to chess experts and novices as well as isolated chess objects. The first experiment demonstrates that chess expertise modulated the FFA activation when chess positions were presented. In contrast, single chess objects did not produce different activation patterns among experts and novices even when the multivariate pattern analysis was used. The second experiment focused on the single chess objects and featured an explicit task of identifying the chess objects but failed to demonstrate expertise effects in the FFA. The experiments provide support for the general expertise view of the FFA function but also extend the scope of our understanding about the function of the FFA. The FFA does not merely distinguish between different exemplars within the same category of stimuli. More likely, it parses complex multiobject stimuli that contain numerous functional and spatial relations.


2015 ◽  
Author(s):  
Daniel D Dilks ◽  
Peter Cook ◽  
Samuel K Weiller ◽  
Helen P Berns ◽  
Mark H Spivak ◽  
...  

Recent behavioral evidence suggests that dogs, like humans and monkeys, are capable of visual face recognition. But do dogs also exhibit specialized cortical face regions similar to humans and monkeys? Using functional magnetic resonance imaging (fMRI) in six dogs trained to remain motionless during scanning without restraint or sedation, we found a region in the canine temporal lobe that responded significantly more to movies of human faces than to movies of everyday objects. Next, using a new stimulus set to investigate face selectivity in this predefined candidate dog face area, we found that this region responded similarly to images of human faces and dog faces, yet significantly more to both human and dog faces than to images of objects. Such face selectivity was not found in dog primary visual cortex. Taken together, these findings: 1) provide the first evidence for a face-selective region in the temporal cortex of dogs, which cannot be explained by simple low-level visual feature extraction; 2) reveal that neural machinery dedicated to face processing is not unique to primates; and 3) may help explain dogs’ exquisite sensitivity to human social cues.


2018 ◽  
Vol 30 (7) ◽  
pp. 973-984 ◽  
Author(s):  
David A. Ross ◽  
Benjamin J. Tamber-Rosenau ◽  
Thomas J. Palmeri ◽  
JieDong Zhang ◽  
Yaoda Xu ◽  
...  

Visual object expertise correlates with neural selectivity in the fusiform face area (FFA). Although behavioral studies suggest that visual expertise is associated with increased use of holistic and configural information, little is known about the nature of the supporting neural representations. Using high-resolution 7-T functional magnetic resonance imaging, we recorded the multivoxel activation patterns elicited by whole cars, configurally disrupted cars, and car parts in individuals with a wide range of car expertise. A probabilistic support vector machine classifier was trained to differentiate activation patterns elicited by whole car images from activation patterns elicited by misconfigured car images. The classifier was then used to classify new combined activation patterns that were created by averaging activation patterns elicited by individually presented top and bottom car parts. In line with the idea that the configuration of parts is critical to expert visual perception, car expertise was negatively associated with the probability of a combined activation pattern being classified as a whole car in the right anterior FFA, a region critical to vision for categories of expertise. Thus, just as found for faces in normal observers, the neural representation of cars in right anterior FFA is more holistic for car experts than car novices, consistent with common mechanisms of neural selectivity for faces and other objects of expertise in this area.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Xiaoxu Fan ◽  
Fan Wang ◽  
Hanyu Shao ◽  
Peng Zhang ◽  
Sheng He

Although face processing has been studied extensively, the dynamics of how face-selective cortical areas are engaged remains unclear. Here, we uncovered the timing of activation in core face-selective regions using functional Magnetic Resonance Imaging and Magnetoencephalography in humans. Processing of normal faces started in the posterior occipital areas and then proceeded to anterior regions. This bottom-up processing sequence was also observed even when internal facial features were misarranged. However, processing of two-tone Mooney faces lacking explicit prototypical facial features engaged top-down projection from the right posterior fusiform face area to right occipital face area. Further, face-specific responses elicited by contextual cues alone emerged simultaneously in the right ventral face-selective regions, suggesting parallel contextual facilitation. Together, our findings chronicle the precise timing of bottom-up, top-down, as well as context-facilitated processing sequences in the occipital-temporal face network, highlighting the importance of the top-down operations especially when faced with incomplete or ambiguous input.


2016 ◽  
Vol 28 (2) ◽  
pp. 282-294 ◽  
Author(s):  
Rankin W. McGugin ◽  
Ana E. Van Gulick ◽  
Isabel Gauthier

The fusiform face area (FFA) is defined by its selectivity for faces. Several studies have shown that the response of FFA to nonface objects can predict behavioral performance for these objects. However, one possible account is that experts pay more attention to objects in their domain of expertise, driving signals up. Here, we show an effect of expertise with nonface objects in FFA that cannot be explained by differential attention to objects of expertise. We explore the relationship between cortical thickness of FFA and face and object recognition using the Cambridge Face Memory Test and Vanderbilt Expertise Test, respectively. We measured cortical thickness in functionally defined regions in a group of men who evidenced functional expertise effects for cars in FFA. Performance with faces and objects together accounted for approximately 40% of the variance in cortical thickness of several FFA patches. Whereas participants with a thicker FFA cortex performed better with vehicles, those with a thinner FFA cortex performed better with faces and living objects. The results point to a domain-general role of FFA in object perception and reveal an interesting double dissociation that does not contrast faces and objects but rather living and nonliving objects.


Neuroscience ◽  
2020 ◽  
Vol 433 ◽  
pp. 42-52
Author(s):  
Ke Zhao ◽  
Mingtong Liu ◽  
Jingjin Gu ◽  
Fan Mo ◽  
Xiaolan Fu ◽  
...  

2019 ◽  
Vol 30 (2) ◽  
pp. 778-785 ◽  
Author(s):  
David Pitcher ◽  
Amy Pilkington ◽  
Lionel Rauth ◽  
Chris Baker ◽  
Dwight J Kravitz ◽  
...  

Abstract Neuroimaging studies show that ventral face-selective regions, including the fusiform face area (FFA) and occipital face area (OFA), preferentially respond to faces presented in the contralateral visual field (VF). In the current study we measured the VF response of the face-selective posterior superior temporal sulcus (pSTS). Across 3 functional magnetic resonance imaging experiments, participants viewed face videos presented in different parts of the VF. Consistent with prior results, we observed a contralateral VF bias in bilateral FFA, right OFA (rOFA), and bilateral human motion-selective area MT+. Intriguingly, this contralateral VF bias was absent in the bilateral pSTS. We then delivered transcranial magnetic stimulation (TMS) over right pSTS (rpSTS) and rOFA, while participants matched facial expressions in both hemifields. TMS delivered over the rpSTS disrupted performance in both hemifields, but TMS delivered over the rOFA disrupted performance in the contralateral hemifield only. These converging results demonstrate that the contralateral bias for faces observed in ventral face-selective areas is absent in the pSTS. This difference in VF response is consistent with face processing models proposing 2 functionally distinct pathways. It further suggests that these models should account for differences in interhemispheric connections between the face-selective areas across these 2 pathways.


Sign in / Sign up

Export Citation Format

Share Document