High-resolution Functional Magnetic Resonance Imaging Reveals Configural Processing of Cars in Right Anterior Fusiform Face Area of Car Experts

2018 ◽  
Vol 30 (7) ◽  
pp. 973-984 ◽  
Author(s):  
David A. Ross ◽  
Benjamin J. Tamber-Rosenau ◽  
Thomas J. Palmeri ◽  
JieDong Zhang ◽  
Yaoda Xu ◽  
...  

Visual object expertise correlates with neural selectivity in the fusiform face area (FFA). Although behavioral studies suggest that visual expertise is associated with increased use of holistic and configural information, little is known about the nature of the supporting neural representations. Using high-resolution 7-T functional magnetic resonance imaging, we recorded the multivoxel activation patterns elicited by whole cars, configurally disrupted cars, and car parts in individuals with a wide range of car expertise. A probabilistic support vector machine classifier was trained to differentiate activation patterns elicited by whole car images from activation patterns elicited by misconfigured car images. The classifier was then used to classify new combined activation patterns that were created by averaging activation patterns elicited by individually presented top and bottom car parts. In line with the idea that the configuration of parts is critical to expert visual perception, car expertise was negatively associated with the probability of a combined activation pattern being classified as a whole car in the right anterior FFA, a region critical to vision for categories of expertise. Thus, just as found for faces in normal observers, the neural representation of cars in right anterior FFA is more holistic for car experts than car novices, consistent with common mechanisms of neural selectivity for faces and other objects of expertise in this area.

1995 ◽  
Vol 3 (3) ◽  
pp. 236-244 ◽  
Author(s):  
Henning Boecker ◽  
Darius Khorram-Sefat ◽  
Andreas Kleinschmidt ◽  
Klaus-Dietmar Merboldt ◽  
Wolfgnag Hänicke ◽  
...  

Sexual Health ◽  
2014 ◽  
Vol 11 (1) ◽  
pp. 11 ◽  
Author(s):  
Gwang-Won Kim ◽  
Gwang-Woo Jeong

Background In contrast to the previous studies using a 1.5-T magnetic resonance imaging system, our study was performed on a higher magnetic field strength, 3.0 T, to gain more valuable information on the functional brain anatomy associated with visual sexual arousal for discriminating the gender difference by increasing the detection power of brain activation. Methods: Twenty-four healthy subjects consisting of 12 males and 12 females underwent functional magnetic resonance imaging examination for this study. Brain activity was measured while viewing erotic videos. Results: The predominant activation areas observed in males as compared with females included the hypothalamus, the globus pallidus, the head of the caudate nucleus, the parahippocampal gyrus, the amygdala and the septal area, whereas the predominant activation in females was observed in the anterior cingulate gyrus and the putamen. Conclusion: Our findings suggest that the brain activation patterns associated with visual sexual arousal are specific to gender. This gender difference in brain activation patterns is more remarkable at higher magnet field (3.0 T) than at 1.5 T.


2010 ◽  
Vol 112 (2) ◽  
pp. 406-417 ◽  
Author(s):  
Esther M. Pogatzki-Zahn ◽  
Christian Wagner ◽  
Anne Meinhardt-Renner ◽  
Markus Burgmer ◽  
Christian Beste ◽  
...  

Introduction In this study, the activation of different brain areas after an experimental surgical incision was assessed by functional magnetic resonance imaging, and the pathophysiological role of distinct brain activation patterns for pain perception after incision was analyzed. Methods Thirty male volunteers (mean age +/-SD, 25+/- 5 yr) received an experimental incision (4 mm) within the volar aspect of the right forearm using a ceramic scalper blade, and 14 volunteers (mean age +/- SD, 25 +/- 4 yr) received a sham procedure. Magnetic resonance images were taken before, during (0-2 min), and after incision or sham procedure (2-4.5, 4.5-10, 24-29, and 44-49 min) at a 3T scanner using a block design. Subjective pain ratings by a numerical pain scale were performed between the scans. Results Functional magnetic resonance imaging analysis showed a distinct temporal profile of activity within specific brain regions during and after the injury. Lateralization (predominantly contralateral to the incision) and increased brain activity of the somatosensory cortex, frontal cortex, and limbic system were observed in subjects after incision, when compared with individuals receiving sham procedure. Peak brain activation occurred about 2 min after incision and decreased subsequently. A distinct correlation between evoked pain ratings and brain activity was observed for the anterior cingulate cortex, insular cortex, thalamus, frontal cortex, and somatosensory cortex. Conclusion These findings show different and distinct cortical and subcortical activation patterns over a relevant time period after incision. Pain sensitivity hereby has an influence on the activity profile. This may have important implications for encoding ongoing pain after a tissue injury, for example, resting pain in postoperative patients.


2007 ◽  
Vol 19 (1) ◽  
pp. 132-146 ◽  
Author(s):  
Shlomo Bentin ◽  
Joseph M. DeGutis ◽  
Mark D'Esposito ◽  
Lynn C. Robertson

Neuropsychological, event-related potential (ERP), and functional magnetic resonance imaging (fMRI) methods were combined to provide a comprehensive description of performance and neurobiological profiles for K.W., a case of congenital prosopagnosia. We demonstrate that K.W.'s visual perception is characterized by almost unprecedented inability to identify faces, a large bias toward local features, and an extreme deficit in global/configural processing that is not confined to faces. This pattern could be appropriately labeled congenital integrative prosopagnosia, and accounts for some, albeit not all, cases of face recognition impairments without identifiable brain lesions. Absence of face selectivity is evident in both biological markers of face processing, fMRI (the fusiform face area [FFA]), and ERPs (N170). Nevertheless, these two neural signatures probably manifest different perceptual mechanisms. Whereas the N170 is triggered by the occurrence of physiognomic stimuli in the visual field, the deficient face-selective fMRI activation in the caudal brain correlates with the severity of global processing deficits. This correlation suggests that the FFA might be associated with global/configural computation, a crucial part of face identification.


Sign in / Sign up

Export Citation Format

Share Document