scholarly journals Long-term potentiation: outstanding questions and attempted synthesis

2003 ◽  
Vol 358 (1432) ◽  
pp. 829-842 ◽  
Author(s):  
John Lisman

This article attempts an overview of the mechanism of NMDAR-dependent long-term potentiation (LTP) and its role in hippocampal networks. Efforts are made to integrate information, often in speculative ways, and to identify unresolved issues about the induction, expression and molecular storage processes. The pre/post debate about LTP expression has been particularly difficult to resolve. The following hypothesis attempts to reconcile the available physiological evidence as well as anatomical evidence that LTP increases synapse size. It is proposed that synapses are composed of a variable number of trans-synaptic modules, each having presynaptic release sites and a postsynaptic structure that can be AMPAfied by the addition of a hyperslot assembly that anchors 10-20 AMPA channels. According to a newly developed view of transmission, the quantal response is generated by AMPA channels near the site of vesicle release and so will depend on whether the module where release occurs has been AMPAfied. LTP expression may involve two structurally mediated processes: (i) the AMPAfication of existing modules by addition of hyperslot assemblies: this is a purely postsynaptic process and produces an increase in the probability of an AMPA response, with no change in the NMDA component; and (ii) the addition of new modules: this is a structurally coordinated pre/post process that leads to LTP-induced synapse enlargement and potentiation of the NMDA component owing to an increase in the number of release sites (the number of NMDA channels is assumed to be fixed). The protocol used for LTP induction appears to affect the proportion of these two processes; pairing protocols that involve low-frequency presynaptic stimulation induce only AMPAfication, making LTP purely postsynaptic, whereas high-frequency stimulation evokes both processes, giving rise to a presynaptic component. This model is capable of reconciling much of the seemingly contradictory evidence in the pre/post debate. The structural nature of the postulated changes is relevant to a second debate: whether a CaMKII switch or protein-dependent structural change is the molecular memory mechanism. A possible reconciliation is that a reversible CaMKII switch controls the construction of modules and hyperslot assemblies from newly synthesized proteins.

2019 ◽  
Vol 116 (13) ◽  
pp. 6397-6406 ◽  
Author(s):  
Xi Chen ◽  
Xiao Li ◽  
Yin Ting Wong ◽  
Xuejiao Zheng ◽  
Haitao Wang ◽  
...  

Memory is stored in neural networks via changes in synaptic strength mediated in part by NMDA receptor (NMDAR)-dependent long-term potentiation (LTP). Here we show that a cholecystokinin (CCK)-B receptor (CCKBR) antagonist blocks high-frequency stimulation-induced neocortical LTP, whereas local infusion of CCK induces LTP. CCK−/−mice lacked neocortical LTP and showed deficits in a cue–cue associative learning paradigm; and administration of CCK rescued associative learning deficits. High-frequency stimulation-induced neocortical LTP was completely blocked by either the NMDAR antagonist or the CCKBR antagonist, while application of either NMDA or CCK induced LTP after low-frequency stimulation. In the presence of CCK, LTP was still induced even after blockade of NMDARs. Local application of NMDA induced the release of CCK in the neocortex. These findings suggest that NMDARs control the release of CCK, which enables neocortical LTP and the formation of cue–cue associative memory.


1983 ◽  
Vol 61 (10) ◽  
pp. 1156-1161 ◽  
Author(s):  
R. W. Skelton ◽  
J. J. Miller ◽  
A. G. Phillips

Brief periods of high-frequency stimulation of hippocampal afferents produce long-term potentiation (LTP) of synaptic transmission, but the minimum frequency capable of inducing this alteration in synaptic efficacy has not been specified. The present study used the repeated measurement of input–output curves in the perforant path – dentate gyrus system of freely moving rats to monitor synaptic efficacy and found that stimulation at 0.2 Hz, but not 0.04 Hz produced LTP. These results suggest that the minimum stimulation frequency capable of producing LTP is lower than previously described. Possible reasons for the discrepancy between the present and previous findings are discussed, along with the implications of low-frequency potentiation.


2006 ◽  
Vol 96 (6) ◽  
pp. 3114-3121 ◽  
Author(s):  
Eve McCutchen ◽  
Cary L. Scheiderer ◽  
Lynn E. Dobrunz ◽  
Lori L. McMahon

Our laboratory recently characterized a form of long-term depression (LTD) at CA3–CA1 synapses mediated by M1 muscarinic receptors (mAChRs), termed muscarinic LTD (mLTD). mLTD is both activity and NMDAR dependent, characteristics shared by forms of synaptic plasticity thought to be relevant to learning and memory, including long-term potentiation (LTP) induced by high-frequency stimulation (HFS-LTP) and long-term depression induced by low-frequency stimulation (LFS-LTD). However, it remains unclear whether mLTD can occur sequentially with these electrically induced forms of hippocampal plasticity or whether mLTD might interact with them. The first goal of this study was to examine the interplay of mLTD and HFS-LTP. We report that mLTD expression does not alter subsequent induction of HFS-LTP and, further, at synapses expressing HFS-LTP, mLTD can mediate a novel form of depotentiation. The second goal was to determine whether mLTD would alter LFS-LTD induction and/or expression. Although we show that mLTD is occluded by saturation of LFS-LTD, suggesting mechanistic similarity between these two plasticities, saturation of mLTD does not occlude LFS-LTD. Surprisingly, however, the LFS-LTD that follows cholinergic receptor activation is NMDAR independent, indicating that application of muscarinic agonist induces a change in the induction mechanism required for LFS-LTD. These data demonstrate that mLTD can coexist with electrically induced forms of synaptic plasticity and support the hypothesis that mLTD is one of the mechanisms by which the cholinergic system modulates hippocampal function.


1991 ◽  
Vol 65 (1) ◽  
pp. 20-32 ◽  
Author(s):  
Y. Komatsu ◽  
S. Nakajima ◽  
K. Toyama

1. Intracellular recording was made from layer II-III cells in slice preparations of kitten (30-40 days old) visual cortex. Low-frequency (0.1 Hz) stimulation of white matter (WM) usually evoked an excitatory postsynaptic potential (EPSP) followed by an inhibitory postsynaptic potential (IPSP). The postsynaptic potentials (PSPs) showed strong dependence on stimulus frequency. Early component of EPSP and IPSP evoked by weak stimulation both decreased monotonically at frequencies greater than 0.5-1 Hz. Strong stimulation similarly depressed the early EPSP at higher frequencies (greater than 2 Hz) and replaced the IPSP with a late EPSP, which had a maximum amplitude in the stimulus frequency range of 2-5 Hz. 2. Very weak WM stimulation sometimes evoked EPSPs in isolation from IPSPs. The falling phase of the EPSP revealed voltage dependence characteristic to the responses mediated by N-methyl-D-aspartate (NMDA) receptors and was depressed by application of an NMDA antagonist DL-2-amino-5-phosphonovalerate (APV), whereas the rising phase of the EPSP was insensitive to APV. 3. The early EPSPs followed by IPSPs were insensitive to APV but were replaced with a slow depolarizing potential by application of a non-NMDA antagonist 6,7-dinitro-quinoxaline-2,3-dione (DNQX), indicating that the early EPSP is mediated by non-NMDA receptors. The slow depolarization was mediated by NMDA receptors because it was depressed by membrane hyperpolarization or addition of APV. 4. The late EPSP evoked by higher-frequency stimulation was abolished by APV, indicating that it is mediated by NMDA receptors, which are located either on the recorded cell or on presynaptic cells to the recorded cells. 5. Long-term potentiation (LTP) of EPSPs was examined in cells perfused with solutions containing 1 microM bicuculline methiodide (BIM), a gamma-aminobutyric acid (GABA) antagonist. WM was stimulated at 2 Hz for 15 min as a conditioning stimulus to induce LTP, and the resultant changes were tested by low-frequency (0.1 Hz) stimulation of WM. 6. LTP of early EPSPs occurred in more than one-half of the cells (8/13) after strong conditioning stimulation. The rising slope of the EPSP was increased 1.6 times on average. 7. To test involvement of NMDA receptors in the induction of LTP in the early EPSP, the effect of conditioning stimulation was studied in a solution containing 100 microM APV, which was sufficient to block completely synaptic transmission mediated by NMDA receptors. LTP occurred in the same frequency and magnitude as in control solution.


2003 ◽  
Vol 358 (1432) ◽  
pp. 689-693 ◽  
Author(s):  
Toshiyuki Hosokawa ◽  
Masaki Ohta ◽  
Takeshi Saito ◽  
Alan Fine

Spatio-temporal patterns of neuronal activity before and after the induction of long-term potentiation in mouse hippocampal slices were studied using a real-time high-resolution optical recording system. After staining the slices with voltage-sensitive dye, transmitted light images and extracellular field potentials were recorded in response to stimuli applied to CA1 stratum radiatum. Optical and electrical signals in response to single test pulses were enhanced for at least 30 minutes after brief high-frequency stimulation at the same site. In two-pathway experiments, potentiation was restricted to the tetanized pathway. The optical signals demonstrated that both the amplitude and area of the synaptic response were increased, in patterns not predictable from the initial, pretetanus, pattern of activation. Optical signals will be useful for investigating spatio-temporal patterns of synaptic enhancement underlying information storage in the brain.


2007 ◽  
Vol 97 (3) ◽  
pp. 2559-2563 ◽  
Author(s):  
Niels Hansen ◽  
Thomas Klein ◽  
Walter Magerl ◽  
Rolf-Detlef Treede

Long-term potentiation of human pain perception (nociceptive LTP) to single electrical test stimuli was induced by high-frequency stimulation (HFS) of cutaneous nociceptive afferents. Numerical pain ratings and a list of sensory pain descriptors disclosed the same magnitude of nociceptive LTP (23% increase for >60 min, P < 0.001), whereas affective pain descriptors were not significantly enhanced. Factor analysis of the sensory pain descriptors showed that facilitation was restricted to two factors characterized by hot and burning (+41%) and piercing and stinging (+21%, both P < 0.01), whereas a factor represented by throbbing and beating was not significantly increased (+9%, P = 0.47). The increased perception of the burning pain quality for >1 h after HFS is interpreted as a LTP-like facilitation of the conditioned cutaneous C-fiber pathway. Additionally, the increase of the stinging pain quality supplied evidence for facilitation of a sharpness-sensitive Aδ-fiber pathway.


Sign in / Sign up

Export Citation Format

Share Document