scholarly journals Organization and expression of organellar genomes

2010 ◽  
Vol 365 (1541) ◽  
pp. 785-797 ◽  
Author(s):  
Adrian C. Barbrook ◽  
Christopher J. Howe ◽  
Davy P. Kurniawan ◽  
Sarah J. Tarr

Protist mitochondrial genomes show a very wide range of gene content, ranging from three genes for respiratory chain components in Apicomplexa and dinoflagellates to nearly 100 genes in Reclinomonas americana . In many organisms the rRNA genes are fragmented, although still functional. Some protist mitochondria encode a full set of tRNAs, while others rely on imported molecules. There is similarly a wide variation in mitochondrial genome organization, even among closely related groups. Mitochondrial gene expression and control are generally poorly characterized. Transcription probably relies on a ‘viral-type’ RNA polymerase, although a ‘bacterial-type’ enzyme may be involved in some cases. Transcripts are heavily edited in many lineages. The chloroplast genome generally shows less variation in gene content and organization, although greatly reduced genomes are found in dinoflagellate algae and non-photosynthetic organisms. Genes in the former are located on small plasmids in contrast to the larger molecules found elsewhere. Control of gene expression in chloroplasts involves transcriptional and post-transcriptional regulation. Redox poise and the ATP/ADP ratio are likely to be important determinants. Some protists have an additional extranuclear genome, the nucleomorph, which is a remnant nucleus. Nucleomorphs of two separate lineages have a number of features in common.

2020 ◽  
Author(s):  
Deniz Durmusoglu ◽  
Ibrahim Al’Abri ◽  
Scott P. Collins ◽  
Chase Beisel ◽  
Nathan Crook

AbstractSaccharomyces boulardii is a widely used yeast probiotic which can counteract various gastrointestinal disorders1. As a relative of Saccharomyces cerevisiae, S. boulardii exhibits rapid growth and is easy to transform2 and thus represents a promising chassis for the engineered secretion of biomolecules. To establish S. boulardii as a platform for delivery of biomolecules to the mammalian gut, we measured the amount and variance in protein expression enabled by promoters, terminators, selective markers, and copy number control elements in this organism. These genetic elements were characterized in plasmidic and genomic contexts, revealing strategies for tunable control of gene expression and CRISPR-mediated genome editing in this strain. We then leveraged this set of genetic parts to combinatorially assemble pathways enabling a wide range of drug and vitamin titers. Finally, we measured S. boulardii’s residence time in the gastrointestinal tracts of germ-free and antibiotic-treated mice, revealing the relationships between dosing strategy and colonization level. This work establishes S. boulardii as a genetically tractable commensal fungus and provides a set of strategies for engineering S. boulardii to synthesize and deliver biomolecules during gut colonization.


1998 ◽  
Vol 80 (4) ◽  
pp. 307-321
Author(s):  
John E. Hesketh ◽  
M. Helena Vasconcelos ◽  
Giovanna Bermano

Nutrition has marked influences on gene expression and an understanding of the interaction between nutrients and gene expression is important in order to provide a basis for determining the nutritional requirements on an individual basis. The effects of nutrition can be exerted at many stages between transcription of the genetic sequence and production of a functional protein. This review focuses on the role of post-transcriptional control, particularly mRNA stability, translation and localization, in the interactions of nutrients with gene expression. The effects of both macronutrients and micronutrients on regulation of gene expression by post-transcriptional mechanisms are presented and the post-transcriptional regulation of specific genes of nutritional relevance (glucose transporters, transferrin, selenoenzymes, metallothionein, lipoproteins) is described in detail. The function of the regulatory signals in the untranslated regions of the mRNA is highlighted in relation to control of mRNA stability, translation and localization and the importance of these mRNA regions to regulation by nutrients is illustrated by reference to specific examples. The localization of mRNA by signals in the untranslated regions and its function in the spatial organization of protein synthesis is described; the potential of such mechanisms to play a key part in nutrient channelling and metabolic compartmentation is discussed. It is concluded that nutrients can influence gene expression through control of the regulatory signals in these untranslated regions and that the post-transcriptional regulation of gene expression by these mechanisms may influence nutritional requirements. It is emphasized that in studies of nutritional control of gene expression it is important not to focus only on regulation through gene promoters but also to consider the possibility of post-transcriptional control.


2016 ◽  
Vol 44 (22) ◽  
pp. 10554-10570 ◽  
Author(s):  
Luke Maishman ◽  
Samson O. Obado ◽  
Sam Alsford ◽  
Jean-Mathieu Bart ◽  
Wei-Ming Chen ◽  
...  

2020 ◽  
Author(s):  
Bryan C Jensen ◽  
Isabelle Q. Phan ◽  
Jacquelyn R. McDonald ◽  
Aakash Sur ◽  
Mark A. Gillespie ◽  
...  

AbstractUnlike most other eukaryotes, Leishmania and other trypanosomatid protozoa have largely eschewed transcriptional control of gene expression; relying instead on post-transcriptional regulation of mRNAs derived from polycistronic transcription units (PTUs). In these parasites, a novel modified nucleotide base (β-D-glucopyranosyloxymethyluracil) known as J plays a critical role in ensuring that transcription termination occurs only at the end of each PTU, rather than at the polyadenylation sites of individual genes. To further understand the biology of J-associated processes, we used tandem affinity purification (TAP-tagging) and mass spectrometry to reveal proteins that interact with the glucosyltransferase performing the final step in J synthesis. These studies identified four proteins reminiscent of subunits in the PTW/PP1 complex that controls transcription termination in higher eukaryotes. Moreover, bioinformatic analyses identified the DNA-binding subunit of Leishmania PTW/PP1 as a novel J-binding protein (JBP3). Down-regulation of JBP3 expression levels in Leishmania resulted in a substantial increase in transcriptional read-through at the 3’ end of most PTUs. Additional TAP-tagging experiments showed that JBP3 also associates with two other protein complexes. One consists of subunits with domains suggestive of a role in chromatin modification/remodeling; while the other contains subunits with similarity to those found in the PAF1 complex involved in regulation of transcription in other eukaryotes. Thus, trypanosomatids utilize protein complexes similar to those used to control transcription termination in other eukaryotes and JBP3 appears to function as a hub linking these modules to base J, thereby enabling the parasites’ unique reliance on polycistronic transcription and post-transcriptional regulation of gene expression.


Sign in / Sign up

Export Citation Format

Share Document