scholarly journals Global positioning system and associated technologies in animal behaviour and ecological research

2010 ◽  
Vol 365 (1550) ◽  
pp. 2163-2176 ◽  
Author(s):  
Stanley M. Tomkiewicz ◽  
Mark R. Fuller ◽  
John G. Kie ◽  
Kirk K. Bates

Biologists can equip animals with global positioning system (GPS) technology to obtain accurate (less than or equal to 30 m) locations that can be combined with sensor data to study animal behaviour and ecology. We provide the background of GPS techniques that have been used to gather data for wildlife studies. We review how GPS has been integrated into functional systems with data storage, data transfer, power supplies, packaging and sensor technologies to collect temperature, activity, proximity and mortality data from terrestrial species and birds. GPS ‘rapid fixing’ technologies combined with sensors provide location, dive frequency and duration profiles, and underwater acoustic information for the study of marine species. We examine how these rapid fixing technologies may be applied to terrestrial and avian applications. We discuss positional data quality and the capability for high-frequency sampling associated with GPS locations. We present alternatives for storing and retrieving data by using dataloggers (biologging), radio-frequency download systems (e.g. very high frequency, spread spectrum), integration of GPS with other satellite systems (e.g. Argos, Globalstar) and potential new data recovery technologies (e.g. network nodes). GPS is one component among many rapidly evolving technologies. Therefore, we recommend that users and suppliers interact to ensure the availability of appropriate equipment to meet animal research objectives.

2009 ◽  
Vol 73 (7) ◽  
pp. 1174-1183 ◽  
Author(s):  
Charles C. Schwartz ◽  
Shannon Podruzny ◽  
Steven L. Cain ◽  
Steve Cherry

Author(s):  
Bing Xu ◽  
Lei Dou

The acquisition stage in global positioning system receivers provides a coarse estimation of the Doppler shift and the code phase of the incoming signals. The accuracy of the estimation, especially the Doppler shift, greatly influences the subsequent tracking loops. Based on the parameter prediction and the chirp z-transform algorithm, a novel acquisition approach to acquire the Doppler shift accurately is proposed. The code phase and the Doppler shift are predicted first according to the desired trajectory of the vehicle and satellite ephemeris. Then, frequency refinement of the code-stripped signal is conducted within a small interval around the predicted Doppler shift by using the chirp z-transform algorithm. To reduce the computational load, the data sequence is down-sampled with an integrate and dump accumulator without degrading the performance of the proposed algorithm. Results indicate that, with only 1 ms sampled data, the proposed algorithm can achieve a high-frequency accuracy. Besides, the proposed algorithm can acquire signals with the carrier-to-noise ratio down to 31 dB-Hz.


The mobile phone commerce is glooming exponentially in the twenty first century. The novelty in Planar Inverted Feed Antenna (PIFA) has a massive position in it. It has a coaxial probe feed and numerous shorting pins in excess of the intended patch antenna. Flame Retardant (FR4) substrate is used in intending of antenna. The recompense in initiating the Defected Ground Structure (DGS) over the patch as well as Defected Microstrip Structure (DMS) was scripted in the intended antenna. The intended petite outline, worth effective and the antenna can be used in the functions similar to Global Positioning System (GPS) at 1.49 GHz reverberating frequency, Worldwide Interoperability for Microwave Access (WiMAX) at 2.53 GHz and 3.5 GHz reverberating frequencies respectively. Simulation is prepared through High Frequency Structural Simulator (HFSS).


Animals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1914
Author(s):  
Mark Cowan ◽  
Mark Blythman ◽  
John Angus ◽  
Lesley Gibson

The expansion of urban areas and associated clearing of habitat can have severe consequences for native wildlife. One option for managing wildlife in these situations is to relocate them. While there is a general perception that relocation is humane, transparency of outcomes is lacking. Here, we document the outcome of 122 western grey kangaroos (Macropus fuliginosus) relocated from an urban development site on the edge of Perth, Western Australia. Global Positioning System (GPS) or Very High Frequency (VHF) collars were fitted to 67 kangaroos, and their survival and movement were monitored over 12 months using telemetry, camera traps and spotlighting. Only six collared animals survived for the duration of the study with most dying within a week of the relocation, indicating stress associated with capture as the likely cause. By the completion of the study, 111 kangaroos were predicted to have died based on the proportion of individuals known to have died. Movement patterns of surviving GPS collared kangaroos changed over time from largely exploratory forays, to more repeated movements between focus areas within home ranges. The poor outcome here raises concerns around the viability of relocating a relatively large number of kangaroos as a management option. It also highlights the need for careful planning to limit the stress associated with capture and transport if relocations are to be used for managing kangaroos in urban areas.


INTI TALAFA ◽  
2018 ◽  
Vol 8 (2) ◽  
Author(s):  
Yaman Khaeruzzaman

Seiring dengan pesatnya kemajuan teknologi saat ini, kebutuhan manusia menjadi lebih beragam, termasuk kebutuhan akan informasi. Tidak hanya media informasinya yang semakin beragam, jenis informasi yang dibutuhkan juga semakin beragam, salah satunya adalah kebutuhan informasi akan posisi kita terhadap lingkungan sekitar. Untuk memenuhi kebutuhan itu sebuah sistem pemosisi diciptakan. Sistem pemosisi yang banyak digunakan saat ini cenderung berfokus pada lingkup ruang yang besar (global) padahal, dalam lingkup ruang yang lebih kecil (lokal) sebuah sistem pemosisi juga diperlukan, seperti di ruang-ruang terbuka umum (taman atau kebun), ataupun dalam sebuah bangunan. Sistem pemosisi lokal yang ada saat ini sering kali membutuhkan infrastruktur yang mahal dalam pembangunannya. Aplikasi Pemosisi Lokal Berbasis Android dengan Menggunakan GPS ini adalah sebuah aplikasi yang dibangun untuk memenuhi kebutuhan pengguna akan informasi lokasi dan posisi mereka terhadap lingkungan di sekitarnya dalam lingkup ruang yang lebih kecil (lokal) dengan memanfaatkan perangkat GPS (Global Positioning System) yang telah tertanam dalam perangkat smartphone Android agar infrastruktur yang dibutuhkan lebih efisien. Dalam implementasinya, Aplikasi Pemosisi Lokal ini bertindak sebagai klien dengan dukungan sebuah Database Server yang berfungsi sebagai media penyimpanan data serta sumber referensi informasi yang dapat diakses melalui jaringan internet sehingga tercipta sebuah sistem yang terintegrasi secara global. Kata kunci: aplikasi, informasi, pemosisi, GPS.


Author(s):  
Violet Bassey Eneyo

This paper examines the distribution of hospitality services in Uyo Urban, Nigeria. GIS method was the primary tool used for data collection. A global positioning system (GPS) Garmin 60 model was used in tracking the location of 102 hospitality services in the study area. One hypothesis was stated and tested using the nearest neighbour analysis. The finding shows evidence of clustering of the various hospitality services. The tested hypothesis further indicated that hospitality services clustered in areas that guarantee a sustainable level of patronage to maximize profit. Thus, the hospitality services clustered in selected streets in the metropolis while limited numbers were found outside the city’s central area.


Sign in / Sign up

Export Citation Format

Share Document