scholarly journals Inception of a false memory by optogenetic manipulation of a hippocampal memory engram

2014 ◽  
Vol 369 (1633) ◽  
pp. 20130142 ◽  
Author(s):  
Xu Liu ◽  
Steve Ramirez ◽  
Susumu Tonegawa

Memories can be easily distorted, and a lack of relevant animal models has largely hindered our understanding of false-memory formation. Here, we first identified a population of cells in the dentate gyrus (DG) of the hippocampus that bear the engrams for a specific context; these cells were naturally activated during the encoding phase of fear conditioning and their artificial reactivation using optogenetics in an unrelated context was sufficient for inducing the fear memory specific to the conditioned context. In a further study, DG or CA1 neurons activated by exposure to a particular context were labelled with channelrhodopsin-2 (ChR2). These neurons were later optically reactivated during fear conditioning in a different context. The DG experimental group showed increased freezing in the original context in which a foot shock was never delivered. The recall of this false memory was context specific, activated similar downstream regions engaged during natural fear-memory recall, and was also capable of driving an active fear response. Together, our data demonstrate that by substituting a natural conditioned stimulus with optogenetically reactivated DG cells that bear contextual memory engrams, it is possible to incept an internally and behaviourally represented false fear memory.

2019 ◽  
Author(s):  
Dheeraj S Roy ◽  
Young-Gyun Park ◽  
Sachie K Ogawa ◽  
Jae H Cho ◽  
Heejin Choi ◽  
...  

Neuronal ensembles that hold specific memory (memory engrams) have been identified in the hippocampus, amygdala, and cortex. It has been hypothesized that engrams for a specific memory are distributed among multiple brain regions that are functionally connected. Here, we report the hitherto most extensive engram map for contextual fear memory by characterizing activity-tagged neurons in 409 regions using SHIELD-based tissue phenotyping. The mapping was aided by a novel engram index, which identified cFos+ brain regions holding engrams with a high probability. Optogenetic manipulations confirmed previously known engrams and revealed new engrams. Many of these engram holding-regions were functionally connected to the CA1 or amygdala engrams. Simultaneous chemogenetic reactivation of multiple engrams, which mimics natural memory recall, conferred a greater level of memory recall than reactivation of a single engram ensemble. Overall, our study supports the hypothesis that a memory is stored in functionally connected engrams distributed across multiple brain regions.


2018 ◽  
Author(s):  
Claire Meissner-Bernard ◽  
Yulia Dembitskaya ◽  
Laurent Venance ◽  
Alexander Fleischmann

AbstractOdor memories are exceptionally robust and essential for animal survival. The olfactory (piriform) cortex has long been hypothesized to encode odor memories, yet the cellular substrates for olfactory learning and memory remain unknown. Here, using intersectional, cFos-based genetic manipulations (“Fos-tagging”), we show that olfactory fear conditioning activates sparse and distributed ensembles of neurons in mouse piriform cortex. We demonstrate that chemogenetic silencing of these Fos-tagged piriform ensembles selectively interferes with odor fear memory retrieval, but does not compromise basic odor detection and discrimination. Furthermore, chemogenetic reactivation of piriform neurons that were Fos-tagged during olfactory fear conditioning causes a decrease in exploratory behavior, mimicking odor-evoked fear memory recall. Together, our experiments identify odor-specific ensembles of piriform neurons as necessary and sufficient for odor fear memory recall.


Science ◽  
2018 ◽  
Vol 361 (6400) ◽  
pp. 392-397 ◽  
Author(s):  
Kazumasa Z. Tanaka ◽  
Hongshen He ◽  
Anupratap Tomar ◽  
Kazue Niisato ◽  
Arthur J. Y. Huang ◽  
...  

Episodic memories are encoded by a sparse population of hippocampal neurons. In mice, optogenetic manipulation of this memory engram established that these neurons are indispensable and inducing for memory recall. However, little is known about their in vivo activity or precise role in memory. We found that during memory encoding, only a fraction of CA1 place cells function as engram neurons, distinguished by firing repetitive bursts paced at the theta frequency. During memory recall, these neurons remained highly context specific, yet demonstrated preferential remapping of their place fields. These data demonstrate a dissociation of precise spatial coding and contextual indexing by distinct hippocampal ensembles and suggest that the hippocampal engram serves as an index of memory content.


Science ◽  
2018 ◽  
Vol 360 (6394) ◽  
pp. 1227-1231 ◽  
Author(s):  
Kareem Abdou ◽  
Mohammad Shehata ◽  
Kiriko Choko ◽  
Hirofumi Nishizono ◽  
Mina Matsuo ◽  
...  

Memories are integrated into interconnected networks; nevertheless, each memory has its own identity. How the brain defines specific memory identity out of intermingled memories stored in a shared cell ensemble has remained elusive. We found that after complete retrograde amnesia of auditory fear conditioning in mice, optogenetic stimulation of the auditory inputs to the lateral amygdala failed to induce memory recall, implying that the memory engram no longer existed in that circuit. Complete amnesia of a given fear memory did not affect another linked fear memory encoded in the shared ensemble. Optogenetic potentiation or depotentiation of the plasticity at synapses specific to one memory affected the recall of only that memory. Thus, the sharing of engram cells underlies the linkage between memories, whereas synapse-specific plasticity guarantees the identity and storage of individual memories.


2020 ◽  
Author(s):  
Jie Li ◽  
Rena Y Jiang ◽  
Kristin L Arendt ◽  
Yu-Tien Hsu ◽  
Sophia R Zhai ◽  
...  

Author(s):  
Satoshi Iwasaki ◽  
Yuji Ikegaya

Abstract Memory retrieval depends on reactivation of memory engram cells. Inadvertent activation of these cells is expected to cause memory-retrieval failure, but little is known about how noisy activity of memory-irrelevant neurons impacts mnemonic processes. Here, we report that optogenetic nonselective activation of only tens of hippocampal CA1 cells (∼0.01% of the total cells in the CA1 pyramidal cell layer) impairs contextual fear memory recall. Memory recall failure was associated with altered neuronal reactivation in the basolateral amygdala. These results indicate that hippocampal memory retrieval requires strictly regulated activation of a specific neuron ensemble and is easily disrupted by the introduction of noisy CA1 activity, suggesting that reactivating memory engram cells as well as silencing memory-irrelevant neurons are both crucial for memory retrieval.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Jie Li ◽  
Rena Y Jiang ◽  
Kristin L Arendt ◽  
Yu-Tien Hsu ◽  
Sophia R Zhai ◽  
...  

Fragile X syndrome (FXS) is an X chromosome-linked disease associated with severe intellectual disabilities. Previous studies using the Fmr1 knockout (KO) mouse, an FXS mouse model, have attributed behavioral deficits to synaptic dysfunctions. However, how functional deficits at neural network level lead to abnormal behavioral learning remains unexplored. Here, we show that the efficacy of hippocampal engram reactivation is reduced in Fmr1 KO mice performing contextual fear memory recall. Experiencing an enriched environment (EE) prior to learning improved the engram reactivation efficacy and rescued memory recall in the Fmr1 KO mice. In addition, chemogenetically inhibiting EE-engaged neurons in CA1 reverses the rescue effect of EE on memory recall. Thus, our results suggest that inappropriate engram reactivation underlies cognitive deficits in FXS, and enriched environment may rescue cognitive deficits by improving network activation accuracy.


2020 ◽  
Vol 378 ◽  
pp. 112156 ◽  
Author(s):  
Ihori Kobayashi ◽  
Mark Hatcher ◽  
Camille Wilson ◽  
Linda Boadi ◽  
Milan Poindexter ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document