animal survival
Recently Published Documents


TOTAL DOCUMENTS

220
(FIVE YEARS 81)

H-INDEX

22
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Long Ma ◽  
Yiman Hu ◽  
Zhaofa Xu

Abstract Animals utilize associated pathways to elicit responses to oxidative stress and infection. The molecular mechanisms coordinating these pathways remain unclear. Here, using C. elegans we identified the highly conserved casein kinase 1 gamma CSNK-1 (also known as CK1g or CSNK1G), as a key regulator of these processes. csnk-1 interacted with the bli-3/tsp-15/doxa-1 dual oxidase genes by nonallelic noncomplementation to negatively regulate animal survival in excess iodide, an oxidative stressor. A conserved interaction was detected between DOXA-1 and CSNK-1 and between their human homologs DUOXA2 and CSNK1G2. csnk-1 deficiency resulted in upregulated expression of innate immunity genes and increased animal survival in the pathogenic Pseudomonas aeruginosa PA14. Phosphoproteomic analyses identified decreased phosphorylation of key innate immunity regulators NSY-1 MAPKKK and LIN-45 Raf in csnk-1(lf) mutants. Indeed, NSY-1 and LIN-45 pathways were required for the increased survival of csnk-1-deficient animals in PA14. Further analyses suggest that CSNK-1 and SKN-1 Nrf2 might act in parallel to regulate oxidative stress response. Together, we propose that CSNK-1 CSNK1G plays a novel pivotal role in integrating animal’s responses to oxidative stress and pathogens.


2021 ◽  
pp. 1-5
Author(s):  
Sara Jabeen ◽  
Usha Gupta ◽  
Aleem Ahmed Khan

INTRODUCTION Hyperglycemia reversal and preservation/restoration of β-cells function in diabetic infarction remains as an attractive and challengeable therapeutic target. Mesenchymal stem cells (MSCs) are multipotent cells with a strong immunoregulatory potential that have emerged as a possible cell-based therapy for a variety of immunological diseases. The objective of this study was to examine the dose-dependent efcacy of intravenous administration of human umbilical cord blood derived MSCs (UCB-MSCs) in chemically induced rats with diabetic infraction. METHODS Wister rats (weight: 200-250g, males) received intraperitoneal streptozotocin injection followed by isoproterenol to develop diabetes infarction condition. After model development animals received intravenous single or double dose of human 6 UCB-MSCs (5 X 10 cells per animal at each dose) and followed up to 30 days post-administration. Pancreatic tissue histology, blood glucose and insulin levels were measured, and proportion of animal survival was calculated using Kaplan-Meier curve analysis. RESULTS Double dose of MSCs infusion resulted in reorganization of islet cells and partial restoration of β-cells at day 30. Comparatively faster restoration of glucose and insulin normalization was observed for two MSCs doses compared to single dose. Highest proportion of animal survival was observed (>85%) for double doses of MSCs infusion compared to single dose (>70%) at day 30. CONCLUSION Two consecutive intravenous doses of human UCB-MSCs can improve structural and functional decits of pancreatic tissues and maintain blood glucose and insulin levels in diabetic infarcted rats up to 30 days. However, identication of long-term effects entails longer follow-up periods, and larger sample sizes with other investigations.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Di Wu ◽  
Hiromu Arakawa ◽  
Akiko Fujita ◽  
Hisashi Hashimoto ◽  
Masahiko Hibi ◽  
...  

AbstractVertebrate CMP-sialic acid synthetase (CSS), which catalyzes the synthesis of CMP-sialic acid (CMP-Sia), consists of a 28 kDa-N-domain and a 20 kDa-C-domain. The N-domain is known to be a catalytic domain; however, the significance of the C-domain still remains unknown. To elucidate the function of the C-domain at the organism level, we screened the medaka TILLING library and obtained medaka with non-synonymous mutations (t911a), or single amino acid substitutions of CSS, L304Q, in the C-domain. Prominently, most L304Q medaka was lethal within 19 days post-fertilization (dpf). L304Q young fry displayed free Sia accumulation, and impairment of sialylation, up to 8 dpf. At 8 dpf, a marked abnormality in ventricular contraction and skeletal myogenesis was observed. To gain insight into the mechanism of L304Q-induced abnormalities, L304Q was biochemically characterized. Although bacterially expressed soluble L304Q and WT showed the similar Vmax/Km values, very few soluble L304Q was detected when expressed in CHO cells in sharp contrast to the WT. Additionally, the thermostability of various mutations of L304 greatly decreased, except for WT and L304I. These results suggest that L304 is important for the stability of CSS, and that an appropriate level of expression of soluble CSS is significant for animal survival.


2021 ◽  
Author(s):  
Bo Deng ◽  
Bing Ma ◽  
Yingying Ma ◽  
Pei Cao ◽  
Xigang Leng ◽  
...  

Abstract Background: Cancer nanovaccine has become a promising approach for cancer immunotherapy. The major challenge of cancer vaccines is limited efficacy caused by lack of desirable tumor specific antigens (TSA). Chemotherapeutics can trigger immunogenic cell death (ICD) and release TSAs, which initiate tumor-specific immune responses. However, ICD-triggered immune responses are usually not potent enough to eliminate the tumor cells. Herein, we developed liposomal spherical nucleic acids (SNA) that can simultaneously deliver and release doxorubicin (DOX) and CpG oligonucleotides upon biological stimuli in tumors to augment antitumor immune responses. Results: SNA nanoparticle increased DOX accumulation at the tumor tissue to induce tumor cells apoptosis and autophagy to activate both ICD-triggered and autophagy-mediated Th1-type immune responses. Meanwhile, CpG, which was co-delivered with DOX, functioned synergistically to potentiate the antitumor immune responses. These nanoparticles effectively inhibited tumor growth and extended animal survival of a mouse lymphoma model. Conclusions: This work provided a simple strategy of delivering chemotherapeutics and adjuvants to tumors to improve immunotherapeutic efficacy of nanovaccines.


2021 ◽  
Vol 11 ◽  
Author(s):  
Lanjuan Mi ◽  
Qinghui Qi ◽  
Haowen Ran ◽  
Lishu Chen ◽  
Da Li ◽  
...  

Glioma stem-like cells (GSCs) are a subset of tumor cells that initiate malignant growth and promote the therapeutic resistance of glioblastoma, the most lethal primary brain tumor. Ribosome biogenesis is an essential cellular process to maintain cell growth, but its regulatory mechanism in GSCs remains largely unknown. Here, we show that WD repeat domain 12 (WDR12), a component of the Pes1-Bop1 complex (PeBoW), is required for ribosome biogenesis in GSCs. WDR12 is preferentially expressed in GSCs compared to non-stem tumor cells and normal brain cells. High levels of WDR12 are associated with glioblastoma progression and poor prognosis. Silencing WDR12 results in the degradation of PeBoW complex components and prevents the maturation of 28S rRNA, thereby inhibiting ribosome biogenesis in GSCs. Subsequently, WDR12 depletion compromises GSC proliferation, inhibits GSC-derived orthotopic tumor growth, and extends animal survival. Together, our results suggest that WDR12 is crucial for ribosome biogenesis in GSCs, and is thus a potential target for GSC-directed therapy of glioblastoma.


Author(s):  
Paolo Solari ◽  
Giorgia Sollai ◽  
Francesco Palmas ◽  
Andrea Sabatini ◽  
Roberto Crnjar

The integration of sensory information with adequate motor outputs is critical for animal survival. Here, we present an innovative technique based on a non-invasive closed-circuit device consisting of a perfusion/stimulation chamber chronically applied on a single leg of the crayfish Procambarus clarkii. Using this technique, we focally stimulated the leg inside the chamber and studied the leg-dependent sensory-motor integration involving other sensory appendages, such as antennules and maxillipeds, which remain unstimulated outside the chamber. Results show that the stimulation of a single leg with chemicals, such as disaccharides, is sufficient to trigger a complex search behaviour involving locomotion coupled with the reflex activation of antennules and maxillipeds. This technique can be easily adapted to other decapods and/or other sensory appendages. Thus, it has opened possibilities for studying sensory-motor integration evoked by leg stimulation in whole aquatic animals under natural conditions to supplement, with a direct approach, current ablation/silencing techniques.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi203-vi203
Author(s):  
Fan Yang ◽  
Steven Brem ◽  
Yi Fan

Abstract Glioblastoma (GBM) is refractory to current T cell-based immunotherapies such as checkpoint blockade. GBM is characterized by extensive infiltration of immunosuppressive macrophages that contribute to the treatment resistance. Here we develop a dual-targeting strategy to synergistically activate tumor-associated macrophages (Mφs), which efficiently overcomes GBM resistance to therapeutic blockade of the PD1 and CTLA4 checkpoints. Consistent with a pro-tumor role of IL-6 in alternative Mφ polarization, we here show that targeting IL-6 by genetic ablation or pharmacological inhibition moderately improves T-cell infiltration into GBM and enhances mouse survival; however, IL-6 inhibition does not synergize PD-1 and CTLA-4 checkpoint blockade. Interestingly, anti-IL-6 therapy reduces CD40 expression in GBM-associated Mφs. We identify a Stat3/HIF-1α-mediated axis, through which IL-6 executes an anti-tumor role to induce CD40 expression in Mφs. Combination of IL-6 inhibition with CD40 stimulation reverses Mφ-mediated tumor immunosuppression, sensitizes tumors to checkpoint blockade, and extends animal survival in two syngeneic GBM models. Notably, this antibody cocktail-based combination immunotherapy with checkpoint blockade almost doubles animal survival in the genetically engineered mouse GBM model and induces complete tumor regression in the GL261 model. Thus, antibody cocktail-based immunotherapy that combines checkpoint blockade with dual-targeting of IL-6 and CD40 may offer exciting therapeutic opportunities for GBM.


Author(s):  
Oleg A. Kulikov ◽  
Andrey V. Zaborovsky ◽  
Dina V. Yunina ◽  
Konstantin G. Gurevich ◽  
Larisa A. Tararina ◽  
...  

Objective. To investigate the possibility of pharmacological correction of acute lung injury of aspiration genesis with a liposomal form of dexamethasone in experiment. Materials and methods. For the experiment, simple liposomes were prepared from phosphatidylcholine and cholesterol with an average size of 320±50 nm and a dexamethasone concentration of 2.98±0.02 mg/ml. The study used outbred white rats, divided into four groups of 16 animals. 1st group Control (without experimental therapy), 2nd group - Experiment 1, where a solution of dexamethasone was injected intravenously at a dose of 6 mg/kg, 3rd group - Experiment 2, where an intravenous combination of dexamethasone solution (6 mg/kg) and hypertonic (7.5%) NaCl solution was administered once, and group 4 - Experiment 3, where liposomes with dexamethasone (6 mg/kg) were injected intravenously once in hypertensive (7.5%) NaCl solution. The main functional parameters of the animals (heart rate, blood pressure, saturation of hemoglobin with oxygen, partial pressure of blood oxygen and respiration rate) were subject to analysis. Functional parameters were analyzed before modeling acute lung injury and after 5 min, 1, 4, 24 hours, and 6 days. At the end of the experiment (day 6) the degree of pulmonary edema and histological signs of acute lung injury were assessed. Morphology was assessed quantitatively in each group. Results. The study found that liposomal dexamethasone in hypertonic NaCl solution, when administered intravenously, was more effective than aqueous dexamethasone solution in correcting functional impairment in acute lung injury. The combination of hypertonic sodium chloride solution with dexamethasone more markedly increases blood pressure and reduces the degree of pulmonary oedema. In acidine pepsin aspiration, liposomal dexamethasone in hypertonic NaCl solution most effectively increased animal survival. Conclusion. Compared with dexamethasone in hypertonic NaCl solution, liposomal dexamethasone is more effective in increasing animal survival and protecting lung tissue from aspiration damage by acidine pepsin.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2968
Author(s):  
Luiza Stanaszek ◽  
Malgorzata Majchrzak ◽  
Katarzyna Drela ◽  
Piotr Rogujski ◽  
Joanna Sanford ◽  
...  

Background: Dysfunction of glia contributes to the deterioration of the central nervous system in a wide array of neurological disorders, thus global replacement of glia is very attractive. Human glial-restricted precursors (hGRPs) transplanted intraventricularly into neonatal mice extensively migrated and rescued the lifespan in half of the studied mice, whereas mouse GRPs (mGRPs) presented no therapeutic benefit. We studied in the same experimental setting canine GRPs (cGRP) to determine whether their therapeutic potential falls between hGRPs and mGRPs. Additional motivation for the selection of cGRPs was a potential for use in veterinary medicine. Methods: cGRPs were extracted from the brain of dog fetuses. The cells were transplanted into the anterior or posterior aspect of the lateral ventricle (LV) of neonatal, immunodeficient, dysmyelinated mice (Mbpshi, Rag2 KO; shiv/rag2). Outcome measures included early cell biodistribution, animal survival and myelination assessed with MRI, immunohistochemistry and electron microscopy. Results: Grafting of cGRP into posterior LV significantly extended animal survival, whereas no benefit was observed after anterior LV transplantation. In contrast, myelination of the corpus callosum was more prominent in anteriorly transplanted animals. Conclusions: The extended survival of animals after transplantation of cGRPs could be explained by the vicinity of the transplant near the brain stem.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Erica de Rysky ◽  
Bisconti Roberta ◽  
Chiocchio Andrea ◽  
Canestrelli Daniele

Abstract Objective Athletic performances are dynamic movements that are physically challenging and often predict individual success in ecological contexts. They stem from a complex integration of multiple phenotypic traits—e.g., morphological, physiological and behavioural—that dictate animal survival and individual fitness. However, directly quantifying athletic performances can be particularly challenging in cryptic, slow-moving species or not very reactive in attitude. Here we present and describe a rapid, simple, and low-cost method to measure athletic performance in post-metamorphic individuals of the fire salamander Salamandra salamandra. While extremely reactive during the larval stage, adult salamanders are, in fact, cryptic and relatively slow-moving. Results Forcing terrestrial juveniles to swim under standard, albeit ecologically plausible, laboratory conditions, and using an automatic point-mass tracking tool, we were able to measure maximal and average performance indicators of post-metamorphic individuals. This method avoids inter-individual variation in motivation, as it forces individuals to perform at their best. Moreover, with this method, measures of athletic performance will be directly comparable between larval and terrestrial stages, allowing to study the contribution of carryover effects to the wide range of processes implicated in the eco-evo-devo of athletic performance in salamanders.


Sign in / Sign up

Export Citation Format

Share Document