scholarly journals Feeding innovations in a nested phylogeny of Neotropical passerines

2016 ◽  
Vol 371 (1690) ◽  
pp. 20150188 ◽  
Author(s):  
Louis Lefebvre ◽  
Simon Ducatez ◽  
Jean-Nicolas Audet

Several studies on cognition, molecular phylogenetics and taxonomic diversity independently suggest that Darwin's finches are part of a larger clade of speciose, flexible birds, the family Thraupidae , a member of the New World nine-primaried oscine superfamily Emberizoidea . Here, we first present a new, previously unpublished, dataset of feeding innovations covering the Neotropical region and compare the stem clades of Darwin's finches to other neotropical clades at the levels of the subfamily, family and superfamily/order. Both in terms of raw frequency as well as rates corrected for research effort and phylogeny, the family Thraupidae and superfamily Emberizoidea show high levels of innovation, supporting the idea that adaptive radiations are favoured when the ancestral stem species were flexible. Second, we discuss examples of innovation and problem-solving in two opportunistic and tame Emberizoid species, the Barbados bullfinch Loxigilla barbadensis and the Carib grackle Quiscalus lugubris fortirostris in Barbados. We review studies on these two species and argue that a comparison of L. barbadensis with its closest, but very shy and conservative local relative, the black-faced grassquit Tiaris bicolor , might provide key insights into the evolutionary divergence of cognition.

2018 ◽  
Vol 115 (46) ◽  
pp. E10879-E10887 ◽  
Author(s):  
Peter R. Grant ◽  
B. Rosemary Grant

Global biodiversity is being degraded at an unprecedented rate, so it is important to preserve the potential for future speciation. Providing for the future requires understanding speciation as a contemporary ecological process. Phylogenetically young adaptive radiations are a good choice for detailed study because diversification is ongoing. A key question is how incipient species become reproductively isolated from each other. Barriers to gene exchange have been investigated experimentally in the laboratory and in the field, but little information exists from the quantitative study of mating patterns in nature. Although the degree to which genetic variation underlying mate-preference learning is unknown, we provide evidence that two species of Darwin’s finches imprint on morphological cues of their parents and mate assortatively. Statistical evidence of presumed imprinting is stronger for sons than for daughters and is stronger for imprinting on fathers than on mothers. In combination, morphology and species-specific song learned from the father constitute a barrier to interbreeding. The barrier becomes stronger the more the species diverge morphologically and ecologically. It occasionally breaks down, and the species hybridize. Hybridization is most likely to happen when species are similar to each other in adaptive morphological traits, e.g., body size and beak size and shape. Hybridization can lead to the formation of a new species reproductively isolated from the parental species as a result of sexual imprinting. Conservation of sufficiently diverse natural habitat is needed to sustain a large sample of extant biota and preserve the potential for future speciation.


2017 ◽  
Vol 372 (1713) ◽  
pp. 20150481 ◽  
Author(s):  
Masayoshi Tokita ◽  
Wataru Yano ◽  
Helen F. James ◽  
Arhat Abzhanov

Adaptive radiation is the rapid evolution of morphologically and ecologically diverse species from a single ancestor. The two classic examples of adaptive radiation are Darwin's finches and the Hawaiian honeycreepers, which evolved remarkable levels of adaptive cranial morphological variation. To gain new insights into the nature of their diversification, we performed comparative three-dimensional geometric morphometric analyses based on X-ray microcomputed tomography (µCT) scanning of dried cranial skeletons. We show that cranial shapes in both Hawaiian honeycreepers and Coerebinae (Darwin's finches and their close relatives) are much more diverse than in their respective outgroups, but Hawaiian honeycreepers as a group display the highest diversity and disparity of all other bird groups studied. We also report a significant contribution of allometry to skull shape variation, and distinct patterns of evolutionary change in skull morphology in the two lineages of songbirds that underwent adaptive radiation on oceanic islands. These findings help to better understand the nature of adaptive radiations in general and provide a foundation for future investigations on the developmental and molecular mechanisms underlying diversification of these morphologically distinguished groups of birds. This article is part of the themed issue ‘Evo-devo in the genomics era, and the origins of morphological diversity’.


2020 ◽  
Vol 4 (2) ◽  
pp. 270-278 ◽  
Author(s):  
Guillermo Navalón ◽  
Jesús Marugán-Lobón ◽  
Jen A. Bright ◽  
Christopher R. Cooney ◽  
Emily J. Rayfield

2021 ◽  
Author(s):  
Carl-Johan Rubin ◽  
Erik D Enbody ◽  
Mariya P Dobreva ◽  
Arkhat Abzhanov ◽  
Brian W Davis ◽  
...  

Recent adaptive radiations are models for investigating mechanisms contributing to the evolution of biodiversity. An unresolved question is the relative importance of new mutations, ancestral variants, and introgressive hybridization for phenotypic evolution and speciation. Here we address this issue using Darwin's finches, which vary in size from an 8g warbler finch with a pointed beak to a 40g large ground finch with a massive blunt beak. We present a highly contiguous genome assembly for one of the species and investigate the genomic architecture underlying phenotypic diversity in the entire radiation. Admixture mapping for beak and body size in the small, medium and large ground finches revealed 28 loci showing strong genetic differentiation. These loci represent ancestral haplotype blocks with origins as old as the Darwin's finch phylogeny (1-2 million years). Genes expressed in the developing beak are overrepresented in these genomic regions. Frequencies of allelic variants at the 28 loci covary with phenotypic similarities in body and beak size across the Darwin's finch phylogeny. These ancestral haplotypes constitute genetic modules for selection, and act as key determinants of the exceptional phenotypic diversity of Darwin's finches. Such ancestral haplotype blocks can be critical for how species adapt to environmental variability and change.


Diversity ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 147
Author(s):  
Mariana Villegas ◽  
Catherine Soos ◽  
Gustavo Jiménez-Uzcátegui ◽  
Shukri Matan ◽  
Keith A. Hobson

Darwin’s finches are a classic example of adaptive radiation involving differential use of dietary resources among sympatric species. Here, we apply stable isotope (δ13C, δ15N, and δ2H) analyses of feathers to examine ecological segregation among eight Darwin’s finch species in Santa Cruz Island, Galápagos collected from live birds and museum specimens (1962–2019). We found that δ13C values were higher for the granivorous and herbivorous foraging guilds, and lower for the insectivorous finches. Values of δ15N were similar among foraging guilds but values of δ2H were higher for insectivores, followed by granivores, and lowest for herbivores. The herbivorous guild generally occupied the largest isotopic standard ellipse areas for all isotopic combinations and the insectivorous guild the smallest. Values of δ2H provided better trophic discrimination than those of δ15N possibly due to confounding influences of agricultural inputs of nitrogen. Segregation among guilds was enhanced by portraying guilds in three-dimensional isotope (δ13C, δ15N, and δ2H) space. Values of δ13C and δ15N were higher for feathers of museum specimens than for live birds. We provide evidence that Darwin’s finches on Santa Cruz Island tend to be generalists with overlapping isotopic niches and suggest that dietary overlap may also be more considerable than previously thought.


Sign in / Sign up

Export Citation Format

Share Document