scholarly journals Pluripotent stem cells: induction and self-renewal

2018 ◽  
Vol 373 (1750) ◽  
pp. 20170213 ◽  
Author(s):  
R. Abu-Dawud ◽  
N. Graffmann ◽  
S. Ferber ◽  
W. Wruck ◽  
J. Adjaye

Pluripotent stem cells (PSCs) lie at the heart of modern regenerative medicine due to their properties of unlimited self-renewal in vitro and their ability to differentiate into cell types representative of the three embryonic germ layers—mesoderm, ectoderm and endoderm. The derivation of induced PSCs bypasses ethical concerns associated with the use of human embryonic stem cells and also enables personalized cell-based therapies. To exploit their regenerative potential, it is essential to have a firm understanding of the molecular processes associated with their induction from somatic cells. This understanding serves two purposes: first, to enable efficient, reliable and cost-effective production of excellent quality induced PSCs and, second, to enable the derivation of safe, good manufacturing practice-grade transplantable donor cells. Here, we review the reprogramming process of somatic cells into induced PSCs and associated mechanisms with emphasis on self-renewal, epigenetic control, mitochondrial bioenergetics, sub-states of pluripotency, naive ground state, naive and primed. A meta-analysis identified genes expressed exclusively in the inner cell mass and in the naive but not in the primed pluripotent state. We propose these as additional biomarkers defining naive PSCs. This article is part of the theme issue ‘Designer human tissue: coming to a lab near you’.

2011 ◽  
Vol 23 (1) ◽  
pp. 249
Author(s):  
D. Kumar ◽  
D. Malakar ◽  
R. Dutta ◽  
S. Garg ◽  
S. Sahu ◽  
...  

Embryonic stem cells (ESC) are derived from the inner cell mass of blastocysts and proliferate extensively while maintaining pluripotency. They can be used for the treatment of juvenile diabetes, Parkinson’s disease, heart failure, and spinal cord injury. However, the use of embryos and tissue rejection remain concerns for ESC transplantation. Reprogramming of somatic cells may be done by different methods such as somatic cell nuclear transfer (Wilmut et al. 1997), fusion of somatic cells (Cowen et al. 2005), treatment with the extract of the pluripotent stem cells (Johnson Rajasingh 2008), and by the stable ectopic expression of defined factors in the somatic cells (Takahashi and Yamanaka 2006). Several transcription factors, including Oct3/4 (Nichols et al. 1998; Niwa et al. 2000), Sox2 (Avilion et al. 2003), and Nanog (Chambers et al. 2003; Mitsui et al. 2003), function in the maintenance of pluripotency in both early embryos and ESC. Takahashi and Yamanaka reported reprogramming the fibroblast cells into stem cells by introducing Oct3/4, Sox2, c-Myc, and Klf4 in mouse embryonic and adult fibroblasts. Yu et al. (2007) demonstrated that four transcription factors (OCT-4, SOX2, NANOG, and LIN28) are sufficient to reprogramme human somatic cells to pluripotent stem cells that exhibit the essential characteristics of ESC. Nakagawa et al. (2008) used three factors (OCT3/4, SOX2, and KLF4) for human iPS cell production from somatic cells. We are trying to reprogramme the adult goat fibroblast cells in induced pluripotent stem cells by using ectopic expression of transcription factors such as Oct-4, Sox2, Nanog, and Lin28. We collected the ovaries from a slaughtered animal from Delhi and collected the oocytes from ovaries. Then after the collection, A and B grade oocytes were selected. Selected oocytes were processed and incubated in in vitro maturation media for 24 h. We collected semen from a male goat, and it was processed and capacitated in sperm TALP. Capacitated sperms were used for IVF of the in vitro matured oocytes in ferTALP. After 12 h sperm were washed from oocytes in embryo developing media (EDM), and oocytes were cultured (in vitro) in EDM. After 24 h cleavage occurred. The cleaved embryos were cultured for 6 to 7 days. At the 7th day, we got blastocysts. From these blastocysts, inner cell mass was isolated enzymatically and cultured to get ESC. The ESC were cultured for 7 passages and used for RNA isolation. The RNA was isolated from these stem cells by the Trizol method. Complementary DNA was prepared by RT-PCR. Using gene-specific primer for Oct-4, Nanog, and Sox2, DNA was amplified. The DNA for the Oct-4, Nanog, and Sox2 genes was cloned in pJET cloning vector and transformed in Top10 E. coli competence cells. After screening, plasmid was isolated and sent for sequencing. Sequences were analysed and the complete open reading frame was created for Oct-4, Nanog, and Sox2.


2014 ◽  
Author(s):  
Virginie Mournetas ◽  
Quentin M. Nunes ◽  
Patricia A. Murray ◽  
Christopher M. Sanderson ◽  
David G. Fernig

Background. Human embryonic stem cells (hESCs) are pluripotent cells derived from the inner cell mass of in vitro fertilised blastocysts, which can either be maintained in an undifferentiated state or committed into lineages under determined culture conditions. These cells offer great potential for regenerative medicine, but at present, little is known about the mechanisms that regulate hESC stemness; in particular, the role of cell-cell and cell-extracellular matrix interactions remain relatively unexplored. Methods and results. In this study we have performed an in silico analysis of cell-microenvironment interactions to identify novel proteins that may be responsible for the maintenance of hESC stemness. A hESC transcriptome of 8,934 mRNAs was assembled using a meta-analysis approach combining the analysis of microarrays and the use of databases for annotation. The STRING database was utilised to construct a protein-protein interaction network focused on extracellular and transcription factor components contained within the assembled transcriptome. This interactome was structurally studied and filtered to identify a short list of 92 candidate proteins, which may regulate hESC stemness. Conclusion. We hypothesise that this list of proteins, either connecting extracellular components with transcriptional networks, or with hub or bottleneck properties, may contain proteins likely to be involved in determining stemness.


2014 ◽  
Author(s):  
Virginie Mournetas ◽  
Quentin M. Nunes ◽  
Patricia A. Murray ◽  
Christopher M. Sanderson ◽  
David G. Fernig

Background. Human embryonic stem cells (hESCs) are pluripotent cells derived from the inner cell mass of in vitro fertilised blastocysts, which can either be maintained in an undifferentiated state or committed into lineages under determined culture conditions. These cells offer great potential for regenerative medicine, but at present, little is known about the mechanisms that regulate hESC stemness; in particular, the role of cell-cell and cell-extracellular matrix interactions remain relatively unexplored. Methods and results. In this study we have performed an in silico analysis of cell-microenvironment interactions to identify novel proteins that may be responsible for the maintenance of hESC stemness. A hESC transcriptome of 8,934 mRNAs was assembled using a meta-analysis approach combining the analysis of microarrays and the use of databases for annotation. The STRING database was utilised to construct a protein-protein interaction network focused on extracellular and transcription factor components contained within the assembled transcriptome. This interactome was structurally studied and filtered to identify a short list of 92 candidate proteins, which may regulate hESC stemness. Conclusion. We hypothesise that this list of proteins, either connecting extracellular components with transcriptional networks, or with hub or bottleneck properties, may contain proteins likely to be involved in determining stemness.


2014 ◽  
Author(s):  
Virginie Mournetas ◽  
Quentin M. Nunes ◽  
Patricia A. Murray ◽  
Christopher M. Sanderson ◽  
David G. Fernig

Background. Human embryonic stem cells (hESCs) are pluripotent cells derived from the inner cell mass of in vitro fertilised blastocysts, which can either be maintained in an undifferentiated state or committed into lineages under determined culture conditions. These cells offer great potential for regenerative medicine, but at present, little is known about the mechanisms that regulate hESC stemness; in particular, the role of cell-cell and cell-extracellular matrix interactions remain relatively unexplored. Methods and results. In this study we have performed an in silico analysis of cell-microenvironment interactions to identify novel proteins that may be responsible for the maintenance of hESC stemness. A hESC transcriptome of 8,934 mRNAs was assembled using a meta-analysis approach combining the analysis of microarrays and the use of databases for annotation. The STRING database was utilised to construct a protein-protein interaction network focused on extracellular and transcription factor components contained within the assembled transcriptome. This interactome was structurally studied and filtered to identify a short list of 92 candidate proteins, which may regulate hESC stemness. Conclusion. We hypothesise that this list of proteins, either connecting extracellular components with transcriptional networks, or with hub or bottleneck properties, may contain proteins likely to be involved in determining stemness.


2016 ◽  
Vol 8 ◽  
pp. GEG.S38093 ◽  
Author(s):  
Jifang Xiao ◽  
Daniel H. Mai ◽  
Liangqi Xie

The rodent naive pluripotent state is believed to represent the preimplantation inner cell mass state of the developing blastocyst and can derive self-renewing pluripotent embryonic stem cells (ESCs) in vitro. Nevertheless, human ESCs exhibit epigenetic, metabolic, and transcriptomic characteristics more akin to primed pluripotent stem cells (PSCs) derived from the postimplantation epiblast. Understanding the genetic and epigenetic mechanisms that constrain human ESCs in the primed state is crucial for the human naive pluripotent state resetting and numerous applications in regenerative medicine. In this review, we begin by defining the naive and primed states in the murine model and compare the epigenetic characteristics of those states to the human PSCs. We also examine the various reprogramming schemes to derive the human naive pluripotent state. Finally, we discuss future perspectives of studying and deriving the human naive PSCs in the context of cellular engineering and regenerative medicine.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Pengfei Ji ◽  
Sasicha Manupipatpong ◽  
Nina Xie ◽  
Yujing Li

Possessing the ability of self-renewal with immortalization and potential for differentiation into different cell types, stem cells, particularly embryonic stem cells (ESC), have attracted significant attention since their discovery. As ESC research has played an essential role in developing our understanding of the mechanisms underlying reproduction, development, and cell (de)differentiation, significant efforts have been made in the biomedical study of ESC in recent decades. However, such studies of ESC have been hampered by the ethical issues and technological challenges surrounding them, therefore dramatically inhibiting the potential applications of ESC in basic biomedical studies and clinical medicine. Induced pluripotent stem cells (iPSCs), generated from the reprogrammed somatic cells, share similar characteristics including but not limited to the morphology and growth of ESC, self-renewal, and potential differentiation into various cell types. The discovery of the iPSC, unhindered by the aforementioned limitations of ESC, introduces a viable alternative to ESC. More importantly, the applications of iPSC in the development of disease models such as neurodegenerative disorders greatly enhance our understanding of the pathogenesis of such diseases and also facilitate the development of clinical therapeutic strategies using iPSC generated from patient somatic cells to avoid an immune rejection. In this review, we highlight the advances in iPSCs generation methods as well as the mechanisms behind their reprogramming. We also discuss future perspectives for the development of iPSC generation methods with higher efficiency and safety.


Biology Open ◽  
2021 ◽  
Vol 10 (10) ◽  
Author(s):  
Viju Vijayan Pillai ◽  
Prasanthi P. Koganti ◽  
Tiffany G. Kei ◽  
Shailesh Gurung ◽  
W. Ronald Butler ◽  
...  

ABSTRACT Although derivation of naïve bovine embryonic stem cells is unachieved, the possibility for generation of bovine induced pluripotent stem cells (biPSCs) has been generally reported. However, attempts to sustain biPSCs by promoting self-renewal have not been successful. Methods established for maintaining murine and human induced pluripotent stem cells (iPSCs) do not support self-renewal of iPSCs for any bovid species. In this study, we examined methods to enhance complete reprogramming and concurrently investigated signaling relevant to pluripotency of the bovine blastocyst inner cell mass (ICM). First, we identified that forced expression of SV40 large T antigen together with the reprogramming genes (OCT4, SOX2, KLF4 and MYC) substantially enhanced the reprogramming efficacy of bovine fibroblasts to biPSCs. Second, we uncovered that TGFβ signaling is actively perturbed in the ICM. Inhibition of ALK4/5/7 to block TGFβ/activin/nodal signaling together with GSK3β and MEK1/2 supported robust in vitro self-renewal of naïve biPSCs with unvarying colony morphology, steady expansion, expected pluripotency gene expression and committed differentiation plasticity. Core similarities between biPSCs and stem cells of the 16-cell-stage bovine embryo indicated a stable ground state of pluripotency; this allowed us to reliably gain predictive understanding of signaling in bovine pluripotency using systems biology approaches. Beyond defining a high-fidelity platform for advancing biPSC-based biotechnologies that have not been previously practicable, these findings also represent a significant step towards understanding corollaries and divergent aspects of bovine pluripotency. This article has an associated First Person interview with the joint first authors of the paper.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Meike Hohwieler ◽  
Martin Müller ◽  
Pierre-Olivier Frappart ◽  
Sandra Heller

Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are characterized by their unique capacity to stepwise differentiate towards any particular cell type in an adult organism. Pluripotent stem cells provide a beneficial platform to model hereditary diseases and even cancer development. While the incidence of pancreatic diseases such as diabetes and pancreatitis is increasing, the understanding of the underlying pathogenesis of particular diseases remains limited. Only a few recent publications have contributed to the characterization of human pancreatic development in the fetal stage. Hence, most knowledge of pancreatic specification is based on murine embryology. Optimizing and understanding current in vitro protocols for pancreatic differentiation of ESCs and iPSCs constitutes a prerequisite to generate functional pancreatic cells for better disease modeling and drug discovery. Moreover, human pancreatic organoids derived from pluripotent stem cells, organ-restricted stem cells, and tumor samples provide a powerful technology to model carcinogenesis and hereditary diseases independent of genetically engineered mouse models. Herein, we summarize recent advances in directed differentiation of pancreatic organoids comprising endocrine cell types. Beyond that, we illustrate up-and-coming applications for organoid-based platforms.


2010 ◽  
Vol 88 (3) ◽  
pp. 479-490 ◽  
Author(s):  
Guoliang Meng ◽  
Shiying Liu ◽  
Xiangyun Li ◽  
Roman Krawetz ◽  
Derrick E. Rancourt

Embryonic stem cells (ESCs) are derived from the inner cell mass (ICM) of the blastocyst. Because of their ability to differentiate into a variety of cell types, human embryonic stem cells (hESCs) provide an unlimited source of cells for clinical medicine and have begun to be used in clinical trials. Presently, although several hundred hESC lines are available in the word, only few have been widely used in basic and applied research. More and more hESC lines with differing genetic backgrounds are required for establishing a bank of hESCs. Here, we report the first Canadian hESC lines to be generated from cryopreserved embryos and we discuss how we navigated through the Canadian regulatory process. The cryopreserved human zygotes used in this study were cultured to the blastocyst stage, and used to isolate ICM via microsurgery. Unlike previous microsurgery methods, which use specialized glass or steel needles, our method conveniently uses syringe needles for the isolation of ICM and subsequent hESC lines. ICM were cultured on MEF feeders in medium containing FBS or serum replacer (SR). Resulting outgrowths were isolated, cut into several cell clumps, and transferred onto fresh feeders. After more than 30 passages, the two hESC lines established using this method exhibited normal morphology, karyotype, and growth rate. Moreover, they stained positively for a variety of pluripotency markers and could be differentiated both in vitro and in vivo. Both cell lines could be maintained under a variety of culture conditions, including xeno-free conditions we have previously described. We suggest that this microsurgical approach may be conducive to deriving xeno-free hESC lines when outgrown on xeno-free human foreskin fibroblast feeders.


2012 ◽  
Vol 24 (1) ◽  
pp. 220
Author(s):  
B. P. Telugu ◽  
T. Ezashi ◽  
A. Alexenko ◽  
S. Lee ◽  
R. S. Prather ◽  
...  

Authentic embryonic stem cells (ESC) may never have been successfully derived from the inner cell mass (ICM) of pig and other ungulates, despite over 25 years of effort. Recently, porcine induced pluripotent stem cells (piPSC) were generated by reprogramming somatic cells with a combination of four factors OCT4, SOX2, KLF4 and c-MYC (OSKM) delivered by lentiviral transduction. The established piPSC are analogous to FGF2-dependent human (h) ESC and murine “epiblast stem cells,” and are likely to advance swine as a model in biomedical research. Here, we report for the first time, the establishment of LIF-dependent, so called naïve type pluripotent stem cells (1) from the inner cell mass (ICM) of porcine blastocysts by up-regulating the expression of KLF4 and POU5F1; and (2) from umbilical cord mesenchyme (Wharton's jelly) by transduction with OSKM factors and subsequent culture in the presence of LIF-based medium with inhibitors that substitute for low endogenous expression of c-MYC and KLF4 and promote pluripotency. The 2 compounds that have been used in this study are, CHIR99021 (CH), which substitutes c-MYC by inhibiting GSK3B and activating WNT signalling and Kenpaullone (KP), which inhibits both GSK3B and CDK1 and supplants KLF4 function. The lentiviral vectors employed for introducing the re-programming genes were modified for doxycycline-mediated induction of expression (tet-on) and are ‘floxed’ for Cre-mediated recombination and removal of transgenes following complete reprogramming. Two LIF-dependent cell lines have been derived from the ICM cells of late d 5.5 in vitro produced blastocysts and four from umbilical cord mesenchyme recovered from fetuses at d 35 of pregnancy. The derived stem cell lines are alkaline phosphatase-positive, resemble mouse embryonic stem cells in colony morphology, cell cycle interval, transcriptome profile and expression of pluripotent markers, such as POU5F1, SOX2 and surface marker SSEA1. They are dependent on LIF signalling for maintenance of pluripotency, can be cultured over extended passage (>50) with no senescence. Of importance, the ICM-derived lines have been successful in their ability to form teratomas. The cells could be cultured in feeder free conditions on a synthetic matrix in the presence of chemically defined medium and can be coaxed to differentiate under xeno-free conditions. Currently, the piPSC lines are being investigated for their ability to give rise to teratomas and to produce a live offspring by nuclear transfer. Supported by Addgene Innovation Award, MO Life Sciences Board Grant 00022147 and NIH grant HD21896.


Sign in / Sign up

Export Citation Format

Share Document