primed state
Recently Published Documents


TOTAL DOCUMENTS

71
(FIVE YEARS 26)

H-INDEX

16
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Josep Rizo ◽  
Levent Sari ◽  
Yife Qi ◽  
Wonpil Im ◽  
Milo M Lin

Synaptic vesicles are primed into a state that is ready for fast neurotransmitter release upon Ca2+-binding to synaptotagmin-1. This state likely includes trans-SNARE complexes between the vesicle and plasma membranes that are bound to synaptotagmin-1 and complexins. However, the nature of this state and the steps leading to membrane fusion are unclear, in part because of the difficulty of studying this dynamic process experimentally. To shed light into these questions, we performed all-atom molecular dynamics simulations of systems containing trans-SNARE complexes between two flat bilayers or a vesicle and a flat bilayer with or without fragments of synaptotagmin-1 and/or complexin-1. Our results help visualize potential states of the release machinery en route to fusion, and suggest mechanistic features that may control the speed of release. In particular, the simulations suggest that the primed state contains almost fully assembled trans-SNARE complexes bound to the synaptotagmin-1 C2B domain and complexin-1 in a spring-loaded configuration where interactions of the C2B domain with the plasma membrane orient complexin-1 toward the vesicle, avoiding premature membrane merger but keeping the system ready for fast fusion upon Ca2+ influx.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (12) ◽  
pp. e1009609
Author(s):  
Alice C. Yuen ◽  
Kenzo-Hugo Hillion ◽  
Ruoxu Wang ◽  
Marc Amoyel

How and when potential becomes restricted in differentiating stem cell daughters is poorly understood. While it is thought that signals from the niche are actively required to prevent differentiation, another model proposes that stem cells can reversibly transit between multiple states, some of which are primed, but not committed, to differentiate. In the Drosophila testis, somatic cyst stem cells (CySCs) generate cyst cells, which encapsulate the germline to support its development. We find that CySCs are maintained independently of niche self-renewal signals if activity of the PI3K/Tor pathway is inhibited. Conversely, PI3K/Tor is not sufficient alone to drive differentiation, suggesting that it acts to license cells for differentiation. Indeed, we find that the germline is required for differentiation of CySCs in response to PI3K/Tor elevation, indicating that final commitment to differentiation involves several steps and intercellular communication. We propose that CySC daughter cells are plastic, that their fate depends on the availability of neighbouring germ cells, and that PI3K/Tor acts to induce a primed state for CySC daughters to enable coordinated differentiation with the germline.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yoshihiro Matsumura ◽  
Ryo Ito ◽  
Ayumu Yajima ◽  
Rei Yamaguchi ◽  
Toshiya Tanaka ◽  
...  

AbstractEnhancer activation is essential for cell-type specific gene expression during cellular differentiation, however, how enhancers transition from a hypoacetylated “primed” state to a hyperacetylated-active state is incompletely understood. Here, we show SET domain-containing 5 (SETD5) forms a complex with NCoR-HDAC3 co-repressor that prevents histone acetylation of enhancers for two master adipogenic regulatory genes Cebpa and Pparg early during adipogenesis. The loss of SETD5 from the complex is followed by enhancer hyperacetylation. SETD5 protein levels were transiently increased and rapidly degraded prior to enhancer activation providing a mechanism for the loss of SETD5 during the transition. We show that induction of the CDC20 co-activator of the ubiquitin ligase leads to APC/C mediated degradation of SETD5 during the transition and this operates as a molecular switch that facilitates adipogenesis.


2021 ◽  
Author(s):  
Nadine Pollak ◽  
Aline Lindner ◽  
Dirke Imig ◽  
Karsten Kuritz ◽  
Jacques S. Fritze ◽  
...  

Extrinsic apoptosis relies on TNF-family receptor activation by immune cells or receptor-activating biologics. Here, we monitored cell cycle progression at minutes resolution to relate apoptosis kinetics and cell-to-cell heterogeneities in death decisions to cell cycle phases. Interestingly, we found that cells in S phase delay TRAIL receptor-induced death in favour for mitosis, thereby passing on an apoptosis-primed state to their offspring. This translates into two distinct fates, apoptosis execution post mitosis or cell survival from inefficient apoptosis. Transmitotic resistance is linked to Mcl-1 upregulation and increased accumulation at mitochondria from mid S phase onwards, which allows cells to pass through mitosis with activated caspase-8, and with cells escaping apoptosis after mitosis sustaining sublethal DNA damage. Antagonizing Mcl-1 suppresses cell cycle-dependent delays in apoptosis, prevents apoptosis-resistant progression through mitosis and averts unwanted survival from apoptosis induction. Cell cycle progression therefore modulates signal transduction during extrinsic apoptosis, with Mcl-1 governing decision making between death, proliferation and survival. Cell cycle progression thus is a crucial process from which cell-to-cell heterogeneities in fates and treatment outcomes emerge in isogenic cell populations during extrinsic apoptosis.


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2476
Author(s):  
Md Tohidul Islam ◽  
Tony Arioli ◽  
David M. Cahill

Plant priming is an induced physiological state where plants are protected from biotic and abiotic stresses. Whether seaweed extracts promote priming is largely unknown as is the mechanism by which priming may occur. In this study, we examined the effect of a seaweed extract (SWE) on two distinct stages of plant priming (priming phase and post-challenge primed state) by characterising (i) plant gene expression responses using qRT-PCR and (ii) signal transduction responses by evaluating reactive oxygen species (ROS) production. The SWE is made from the brown algae Ascophyllum nodosum and Durvillaea potatorum. The priming phase was examined using both Arabidopsis thaliana and Solanum lycopersicum. At this stage, the SWE up-regulated key priming-related genes, such as those related to systemic acquired resistance (SAR) and activated the production of ROS. These responses were found to be temporal (lasting 3 days). The post-challenge primed state was examined using A. thaliana challenged with a root pathogen. Similarly, defence response-related genes, such as PR1 and NPR1, were up-regulated and ROS production was activated (lasting 5 days). This study found that SWE induces plant priming-like responses by (i) up-regulating genes associated with plant defence responses and (ii) increasing production of ROS associated with signalling responses.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ifigeneia Mellidou ◽  
Aggeliki Ainalidou ◽  
Anastasia Papadopoulou ◽  
Kleopatra Leontidou ◽  
Savvas Genitsaris ◽  
...  

Plant-associated beneficial strains inhabiting plants grown under harsh ecosystems can help them cope with abiotic stress factors by positively influencing plant physiology, development, and environmental adaptation. Previously, we isolated a potential plant growth promoting strain (AXSa06) identified as Pseudomonas oryzihabitans, possessing 1-aminocyclopropane-1-carboxylate deaminase activity, producing indole-3-acetic acid and siderophores, as well as solubilizing inorganic phosphorus. In this study, we aimed to further evaluate the effects of AXSa06 seed inoculation on the growth of tomato seedlings under excess salt (200 mM NaCl) by deciphering their transcriptomic and metabolomic profiles. Differences in transcript levels and metabolites following AXSa06 inoculation seem likely to have contributed to the observed difference in salt adaptation of inoculated plants. In particular, inoculations exerted a positive effect on plant growth and photosynthetic parameters, imposing plants to a primed state, at which they were able to respond more robustly to salt stress probably by efficiently activating antioxidant metabolism, by dampening stress signals, by detoxifying Na+, as well as by effectively assimilating carbon and nitrogen. The primed state of AXSa06-inoculated plants is supported by the increased leaf lipid peroxidation, ascorbate content, as well as the enhanced activities of antioxidant enzymes, prior to stress treatment. The identified signatory molecules of AXSa06-mediated salt tolerance included the amino acids aspartate, threonine, serine, and glutamate, as well as key genes related to ethylene or abscisic acid homeostasis and perception, and ion antiporters. Our findings represent a promising sustainable solution to improve agricultural production under the forthcoming climate change conditions.


Author(s):  
Mengyi Wei ◽  
Yanglin Chen ◽  
Chaoyue Zhao ◽  
Li Zheng ◽  
Baojiang Wu ◽  
...  

In mice, embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs) are established from pre- and post-implantation embryos and represent the naive and primed state, respectively. Herein we used mouse leukemia inhibitory factor (LIF), which supports ESCs self-renewal and Activin A (Act A), which is the main factor in maintaining EpiSCs in post-implantation epiblast cultures, to derive a primed stem cell line named ALSCs. Like EpiSCs, ALSCs express key pluripotent genes Oct4, Sox2, and Nanog; one X chromosome was inactivated; and the cells failed to contribute to chimera formation in vivo. Notably, compared to EpiSCs, ALSCs efficiently reversed to ESCs (rESCs) on activation of Wnt signaling. Moreover, we also discovered that culturing EpiSCs in AL medium for several passages favored Wnt signaling-driven naive pluripotency. Our results show that ALSCs is a primed state stem cell and represents a simple model to study the control of pluripotency fate and conversion from the primed to the naive state.


Author(s):  
Maya E. Kotas ◽  
Nicholas M. Mroz ◽  
Satoshi Koga ◽  
Hong-Erh Liang ◽  
Andrew W. Schroeder ◽  
...  

AbstractInnate lymphoid cells (ILCs) are tissue-resident effectors poised to activate rapidly in response to local signals such as cytokines. To preserve homeostasis, ILCs must employ multiple pathways, including tonic suppressive mechanisms, to regulate their primed state and prevent inappropriate activation and immunopathology. Such mechanisms remain incompletely characterized. Here we show that cytokine-inducible SH2-containing protein (CISH), a suppressor of cytokine signaling (SOCS) family member, is highly and constitutively expressed in type 2 innate lymphoid cells (ILC2s). Mice that lack CISH either globally or conditionally in ILC2s show increased ILC2 expansion and activation, in association with reduced expression of genes inhibiting cell-cycle progression. Augmented proliferation and activation of CISH-deficient ILC2s increases basal and inflammation-induced numbers of intestinal tuft cells and accelerates clearance of the model helminth, Nippostrongylus brasiliensis, but compromises innate control of Salmonella typhimurium. Thus, CISH constrains ILC2 activity both tonically and after perturbation, and contributes to the regulation of immunity in mucosal tissue.


2021 ◽  
Author(s):  
Marc Amoyel ◽  
Alice C Yuen ◽  
Kenzo-Hugo Hillion

How and when potential becomes restricted in differentiating stem cell daughters is poorly understood. While it is thought that signals from the niche are actively required to prevent differentiation, another model proposes that stem cells can reversibly transit between multiple states, some of which are primed, but not committed, to differentiate. In the Drosophila testis, somatic cyst stem cells (CySCs) generate cyst cells, which encapsulate the germline to support its development. We find that CySCs are maintained independently of niche self-renewal signals if activity of the PI3K/Tor pathway is inhibited. Conversely, PI3K/Tor is not sufficient alone to drive differentiation, suggesting that it acts to license cells for differentiation. Indeed, we find that the germline is required for differentiation of CySCs in response to PI3K/Tor elevation, indicating that final commitment to differentiation involves several steps and intercellular communication. We propose that CySC daughter cells are plastic, that their fate depends on the availability of neighbouring germ cells, and that PI3K/Tor acts to induce a primed state for CySC daughters to enable coordinated differentiation with the germline.


Sign in / Sign up

Export Citation Format

Share Document