scholarly journals Sensory bias and signal detection trade-offs maintain intersexual floral mimicry

2020 ◽  
Vol 375 (1802) ◽  
pp. 20190469 ◽  
Author(s):  
Avery L. Russell ◽  
David W. Kikuchi ◽  
Noah W. Giebink ◽  
Daniel R. Papaj

Mimicry is common in interspecies interactions, yet conditions maintaining Batesian mimicry have been primarily tested in predator–prey interactions. In pollination mutualisms, floral mimetic signals thought to dupe animals into pollinating unrewarding flowers are widespread (greater than 32 plant families). Yet whether animals learn to both correctly identify floral models and reject floral mimics and whether these responses are frequency-dependent is not well understood. We tested how learning affected the effectiveness and frequency-dependence of imperfect Batesian mimicry among flowers using the generalist bumblebee, Bombus impatiens , visiting Begonia odorata , a plant species exhibiting intersexual floral mimicry. Unrewarding female flowers are mimics of pollen-rewarding male flowers (models), though mimicry to the human eye is imperfect. Flower-naive bees exhibited a perceptual bias for mimics over models, but rapidly learned to avoid mimics. Surprisingly, altering the frequency of models and mimics only marginally shaped responses by naive bees and by bees experienced with the distribution and frequency of models and mimics. Our results provide evidence both of exploitation by the plant of signal detection trade-offs in bees and of resistance by the bees, via learning, to this exploitation. Critically, we provide experimental evidence that imperfect Batesian mimicry can be adaptive and, in contrast with expectations of signal detection theory, functions largely independently of the model and mimic frequency. This article is part of the theme issue ‘Signal detection theory in recognition systems: from evolving models to experimental tests’.

2018 ◽  
Author(s):  
James Marshall ◽  
Ralf H.J.M. Kurvers ◽  
Jens Krause ◽  
Max Wolf

Majority-voting and the Condorcet Jury Theorem pervade thinking about collective decision-making. Thus, it is typically assumed that majority-voting is the best possible decision mechanism, and that scenarios exist where individually-weak decision-makers should not pool information. Condorcet and its applications implicitly assume that only one kind of error can be made, yet signal detection theory shows two kinds of errors exist, ‘false positives’ and ‘false negatives’. We apply signal detection theory to collective decision-making to show that majority voting is frequently sub-optimal, and can be optimally replaced by quorum decision-making. While quorums have been proposed to resolve within-group conflicts, or manage speed-accuracy trade-offs, our analysis applies to groups with aligned interests undertaking single-shot decisions. Our results help explain the ubiquity of quorum decision-making in nature, relate the use of sub- and super-majority quorums to decision ecology, and may inform the design of artificial decision-making systems.Impact StatementTheory typically assumes that majority voting is optimal; this is incorrect – majority voting is typically sub-optimal, and should be replaced by sub-majority or super-majority quorum voting. This helps explain the prevalence of quorum-sensing in even the simplest collective systems, such as bacterial communities.


2020 ◽  
Vol 375 (1802) ◽  
pp. 20190480 ◽  
Author(s):  
Christian J. Sumner ◽  
Seirian Sumner

Conspecific acceptance thresholds (Reeve 1989 Am. Nat. 133 , 407–435), which have been widely applied to explain ecological behaviour in animals, proposed how sensory information, prior information and the costs of decisions determine actions. Signal detection theory (Green & Swets 1966 Signal detection theory and psychophysics ; SDT), which forms the basis of CAT models, has been widely used in psychological studies to partition the ability to discriminate sensory information from the action made as a result of it. In this article, we will review the application of SDT in interpreting the behaviour of laboratory animals trained in operant conditioning tasks and then consider its potential in ecological studies of animal behaviour in natural environments. Focusing on the nest-mate recognition systems exhibited by social insects, we show how the quantitative application of SDT has the potential to transform acceptance rate data into independent indices of cue sensitivity and decision criterion (also known as the acceptance threshold). However, further tests of the assumptions underlying SDT analysis are required. Overall, we argue that SDT, as conventionally applied in psychological studies, may provide clearer insights into the mechanistic basis of decision making and information processing in behavioural ecology. This article is part of the theme issue ‘Signal detection theory in recognition systems: from evolving models to experimental tests’.


1975 ◽  
Vol 37 (4) ◽  
pp. 367-387 ◽  
Author(s):  
A. Oaten ◽  
C. E. M. Pearce ◽  
M. E. B. Smyth

2013 ◽  
Vol 280 (1753) ◽  
pp. 20122588 ◽  
Author(s):  
Øistein Haugsten Holen

Many predators quickly learn to avoid attacking aposematic prey. If the prey vary in toxicity, the predators may alternatively learn to capture and taste-sample prey carefully before ingesting or rejecting them (go-slow behaviour). An increase in prey toxicity is generally thought to decrease predation on prey populations. However, while prey with a higher toxin load are more harmful to ingest, they may also be easier to recognize and reject owing to greater distastefulness, which can facilitate a taste-sampling foraging strategy. Here, the classic diet model is used to study the separate effects of taste and toxicity on predator preferences. The taste-sampling process is modelled using signal detection theory. The model is applicable to automimicry and Batesian mimicry. It shows that when the defensive toxin is sufficiently distasteful, a mimicry complex may be less profitable to the predator and better protected against predation if the models are moderately toxic than if they are highly toxic. Moreover, taste mimicry can reduce the profitability of the mimicry complex and increase protection against predation. The results are discussed in relation to the selection pressures acting on prey defences and the evolution of mimicry.


2020 ◽  
Vol 375 (1802) ◽  
pp. 20190475 ◽  
Author(s):  
Hannah M. Scharf ◽  
Andrew V. Suarez ◽  
H. Kern Reeve ◽  
Mark E. Hauber

How do organisms balance different types of recognition errors when cues associated with desirable and undesirable individuals or resources overlap? This is a fundamental question of signal detection theory (SDT). As applied in sociobiology, SDT is not limited to a single context or animal taxon, therefore its application can span what may be considered dissimilar systems. One of the applications of SDT is the suite of acceptance threshold models proposed by Reeve (1989), which analysed how individuals should balance acceptance and rejection errors in social discrimination decisions across a variety of recognition contexts, distinguished by how these costs and benefits relatively combine. We conducted a literature review to evaluate whether these models' specific predictions have been upheld. By examining over 350 research papers, we quantify how Reeve's models (Reeve 1989 Am. Nat. 133 , 407–435 ( doi:10.1086/284926 )) have influenced the field of ecological and behavioural recognition systems research. We found overall empirical support for the predictions of the specific models proposed by Reeve, and argue for further expansion of their applications into more diverse taxonomic and additional recognition contexts. This article is part of the theme issue ‘Signal detection theory in recognition systems: from evolving models to experimental tests’.


2006 ◽  
Vol 73 (3) ◽  
pp. 299-307 ◽  
Author(s):  
Liam McGuire ◽  
Hans Van Gossum ◽  
Kirsten Beirinckx ◽  
Thomas N. Sherratt

2020 ◽  
Vol 375 (1802) ◽  
pp. 20190486 ◽  
Author(s):  
Elinor M. Lichtenberg ◽  
Jacob M. Heiling ◽  
Judith L. Bronstein ◽  
Jessica L. Barker

Floral communities present complex and shifting resource landscapes for flower-foraging animals. Strong similarities among the floral displays of different plant species, paired with high variability in reward distributions across time and space, can weaken correlations between floral signals and reward status. As a result, it should be difficult for foragers to discriminate between rewarding and rewardless flowers. Building on signal detection theory in behavioural ecology, we use hypothetical probability density functions to examine graphically how plant signals pose challenges to forager decision-making. We argue that foraging costs associated with incorrect acceptance of rewardless flowers and incorrect rejection of rewarding ones interact with community-level reward availability to determine the extent to which rewardless and rewarding species should overlap in flowering time. We discuss the evolutionary consequences of these phenomena from both the forager and the plant perspectives. This article is part of the theme issue ‘Signal detection theory in recognition systems: from evolving models to experimental tests’.


2015 ◽  
Vol 26 (4) ◽  
pp. 1226-1235 ◽  
Author(s):  
David W. Kikuchi ◽  
Gaurav Malick ◽  
Richard J. Webster ◽  
Emilee Whissell ◽  
Thomas N. Sherratt

Sign in / Sign up

Export Citation Format

Share Document