batesian mimicry
Recently Published Documents


TOTAL DOCUMENTS

169
(FIVE YEARS 37)

H-INDEX

26
(FIVE YEARS 2)

2021 ◽  
Author(s):  
◽  
Karl Graeme Yager

<p>There is an immense amount of variation in leaf shape, size, and colouration, both across and within plant species. Leaf shape and colour, in some instances, can be attributed as a physiological response to particular abiotic stressors. However, leaf shape, size, and colour are used by herbivores to identify sources of palatable foliage for food. It is possible, therefore, that an undefended plant might gain protection from herbivores by matching leaf characteristics of a chemically defended species. The matching of defensive signals by an undefended species in order to dupe a predator is known as Batesian mimicry, and whilst believed to be a relatively common phenomenon amongst animals, it has yet to be proven in plants. The foliage of Alseuosmia pusilla (Colenso) A. Cunningham, is strikingly similar to the human eye to that of Pseudowintera colorata (Raoul) Dandy, an unrelated sympatric species found in New Zealand. Unlike the foliage of A. pusilla, that of P. colorata contains a number of secondary metabolites associated with herbivore defence, including a sesquiterpene dialdehyde known as polygodial, a known potent insect antifeedant that imparts a pungent peppery taste when eaten. It has been hypothesised that this similarity evolved under browsing pressure from nine species of large extinct herbivorous birds, collectively known as moa. Whilst moa became extinct soon after the arrival of humans, the large herbivore guild has been effectively replaced by a range of introduced mammalian herbivores including several species of deer, though to what degree remains controversial.  In chapter two, I established a robust spatially explicit morphometric analysis method to test how similar the leaves of A. pusilla and P. colorata leaves were, and whether leaf shape was a distinctive trait within their shared habitat. Using the Cartesian coordinates of leaf margins as descriptors of leaf shape, I found that P. colorata leaves were morphologically distinct from all of the neighbouring species except for those of A. pusilla. A. pusilla individuals were more similar to neighbouring than to distant P. colorata, and 90% of leaf shape variation in the two species varied similarly across an elevational gradient. The data are consistent with Batesian mimicry, wherein the conspicuous characteristic of a defended model is replicated by an undefended mimic across its entire growing range.  In chapter three, I tested how leaf shape variation within, and between, A. pusilla and P. colorata responded when exposed to high levels of mammalian herbivory. I demonstrated that in a forest population of P. colorata and A. pusilla exposed to high mammalian herbivory pressure, leaf shape variation is reduced in both focal species, but not in other sympatric species. This is consistent with Batesian mimicry, wherein increased herbivory pressure selects for a stronger signal in the distinctive characteristic of the defended plant, and through the selection for mimicry, variation in the mimic’s phenotype converges on the model’s phenotype. Additionally, when alternative palatable food is preferentially targeted, P. colorata increased in abundance along with a proportionate increase in A. pusilla’s abundance. Invertebrate herbivory was estimated to be similar on both species at both sites.  In chapter four, I tested the hypothesis that A. pusilla is a Batesian mimic of P. colorata using farmed red deer (Cervus elaphus scoticus) in feeding trials. The deer found A. pusilla more palatable than P. colorata, and after eating a P. colorata individual, they became reluctant to eat another plant. Although the two plants differ significantly in volatile organic compound emissions, deer were equally likely to first eat an A. pusilla as they were a P. colorata, therefore were unable to use olfactory cues, or visually differentiate between the two species. As the relative abundance of P. colorata increased, herbivory damage was lower, both in the defended P. colorata and in the undefended A. pusilla. This study provides the first unequivocal proof of defensive Batesian mimicry in plants.  In chapter five, using humans as surrogate herbivores, I tested how leaf shape and colour can be used as cues or signals by herbivores when foraging for food under different conditions. Subjects found leaf size a distracting characteristic, foraging more effectively when A. pusilla and P. colorata individuals were most similar in 94% of their shared shape variation. The trait of leaf colour, whilst unreliable by itself, acted to potentiate the trait of leaf shape, as a signal or cue. Fast feedback on species palatability improved accuracy in identifying A. pusilla, but neither fast nor slow feedback improved discriminability of P. colorata. A. pusilla leaves were harder to discriminate when presented on a “disruptive” backdrop. My results demonstrate that leaf shape can act as a signal or cue. These results indicate why further research into plant-herbivore communication is important and that it could provide powerful insights into the functional significance of leaf morphology.  This thesis provides a significant contribution to our understanding of how leaves function as signals or cues to herbivores in three ways: (i) it provides the first detailed and powerful quantitative evidence of leaf shape matching between two species, and demonstrates the importance of using a spatially explicit morphometric method when investigating leaf shape; (ii) it is the first to unequivocally prove defensive Batesian mimicry in plants; and (iii) it demonstrates that leaf traits can act as signals or cues.</p>


2021 ◽  
Author(s):  
◽  
Karl Graeme Yager

<p>There is an immense amount of variation in leaf shape, size, and colouration, both across and within plant species. Leaf shape and colour, in some instances, can be attributed as a physiological response to particular abiotic stressors. However, leaf shape, size, and colour are used by herbivores to identify sources of palatable foliage for food. It is possible, therefore, that an undefended plant might gain protection from herbivores by matching leaf characteristics of a chemically defended species. The matching of defensive signals by an undefended species in order to dupe a predator is known as Batesian mimicry, and whilst believed to be a relatively common phenomenon amongst animals, it has yet to be proven in plants. The foliage of Alseuosmia pusilla (Colenso) A. Cunningham, is strikingly similar to the human eye to that of Pseudowintera colorata (Raoul) Dandy, an unrelated sympatric species found in New Zealand. Unlike the foliage of A. pusilla, that of P. colorata contains a number of secondary metabolites associated with herbivore defence, including a sesquiterpene dialdehyde known as polygodial, a known potent insect antifeedant that imparts a pungent peppery taste when eaten. It has been hypothesised that this similarity evolved under browsing pressure from nine species of large extinct herbivorous birds, collectively known as moa. Whilst moa became extinct soon after the arrival of humans, the large herbivore guild has been effectively replaced by a range of introduced mammalian herbivores including several species of deer, though to what degree remains controversial.  In chapter two, I established a robust spatially explicit morphometric analysis method to test how similar the leaves of A. pusilla and P. colorata leaves were, and whether leaf shape was a distinctive trait within their shared habitat. Using the Cartesian coordinates of leaf margins as descriptors of leaf shape, I found that P. colorata leaves were morphologically distinct from all of the neighbouring species except for those of A. pusilla. A. pusilla individuals were more similar to neighbouring than to distant P. colorata, and 90% of leaf shape variation in the two species varied similarly across an elevational gradient. The data are consistent with Batesian mimicry, wherein the conspicuous characteristic of a defended model is replicated by an undefended mimic across its entire growing range.  In chapter three, I tested how leaf shape variation within, and between, A. pusilla and P. colorata responded when exposed to high levels of mammalian herbivory. I demonstrated that in a forest population of P. colorata and A. pusilla exposed to high mammalian herbivory pressure, leaf shape variation is reduced in both focal species, but not in other sympatric species. This is consistent with Batesian mimicry, wherein increased herbivory pressure selects for a stronger signal in the distinctive characteristic of the defended plant, and through the selection for mimicry, variation in the mimic’s phenotype converges on the model’s phenotype. Additionally, when alternative palatable food is preferentially targeted, P. colorata increased in abundance along with a proportionate increase in A. pusilla’s abundance. Invertebrate herbivory was estimated to be similar on both species at both sites.  In chapter four, I tested the hypothesis that A. pusilla is a Batesian mimic of P. colorata using farmed red deer (Cervus elaphus scoticus) in feeding trials. The deer found A. pusilla more palatable than P. colorata, and after eating a P. colorata individual, they became reluctant to eat another plant. Although the two plants differ significantly in volatile organic compound emissions, deer were equally likely to first eat an A. pusilla as they were a P. colorata, therefore were unable to use olfactory cues, or visually differentiate between the two species. As the relative abundance of P. colorata increased, herbivory damage was lower, both in the defended P. colorata and in the undefended A. pusilla. This study provides the first unequivocal proof of defensive Batesian mimicry in plants.  In chapter five, using humans as surrogate herbivores, I tested how leaf shape and colour can be used as cues or signals by herbivores when foraging for food under different conditions. Subjects found leaf size a distracting characteristic, foraging more effectively when A. pusilla and P. colorata individuals were most similar in 94% of their shared shape variation. The trait of leaf colour, whilst unreliable by itself, acted to potentiate the trait of leaf shape, as a signal or cue. Fast feedback on species palatability improved accuracy in identifying A. pusilla, but neither fast nor slow feedback improved discriminability of P. colorata. A. pusilla leaves were harder to discriminate when presented on a “disruptive” backdrop. My results demonstrate that leaf shape can act as a signal or cue. These results indicate why further research into plant-herbivore communication is important and that it could provide powerful insights into the functional significance of leaf morphology.  This thesis provides a significant contribution to our understanding of how leaves function as signals or cues to herbivores in three ways: (i) it provides the first detailed and powerful quantitative evidence of leaf shape matching between two species, and demonstrates the importance of using a spatially explicit morphometric method when investigating leaf shape; (ii) it is the first to unequivocally prove defensive Batesian mimicry in plants; and (iii) it demonstrates that leaf traits can act as signals or cues.</p>


2021 ◽  
Author(s):  
David Kikuchi ◽  
Michael Barfield ◽  
Marie E Herberstein ◽  
Johanna Mappes ◽  
Robert D. Holt

2021 ◽  
Author(s):  
Nimish Subramaniam ◽  
Krishnapriya Tamma ◽  
Divya Uma

Batesian mimicry imposes several challenges to mimics and evokes adaptations in multiple sensory modalities. Myrmecomorphy, morphological and behavioral resemblance to ants, is seen in over 2000 arthropod species. Ant-like resemblance is observed in at least 13 spider families despite spiders having a distinct body plan compared to ants. Quantifying the extent to which spider's shape, size, and behavior resemble model ants will allow us to comprehend the evolutionary pressures that have facilitated myrmecomorphy. Myrmaplata plataleoides are 'accurate' mimics of the weaver ants, Oecophylla smaragdina. In this study, we quantify the speed of movement of model, mimic, and non-mimetic jumping spiders. We use traditional and geometric morphometrics to quantify traits such as foreleg and hindleg size, body shape between the model ant, mimic, and non-mimics. Our results suggest that while the mimics closely resemble the model ants in speed of movement, they occupy an intermediate morphological space compared to the model ants and non-mimics. We suggest that ant-mimicking spiders are better at mimicking ant's locomotory movement than morphology and overall body shape. Our study provides a framework to understand the multimodal nature of mimicry and helps discern the relative contributions of such traits that drive mimetic accuracy in ant-mimicking spiders.


Evolution ◽  
2021 ◽  
Author(s):  
Alice Leavey ◽  
Christopher H. Taylor ◽  
Matthew R. E. Symonds ◽  
Francis Gilbert ◽  
Tom Reader

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Marta Skowron Volponi ◽  
Luca Pietro Casacci ◽  
Paolo Volponi ◽  
Francesca Barbero

Abstract Background The endless struggle to survive has driven harmless species to evolve elaborate strategies of deceiving predators. Batesian mimicry involves imitations of noxious species’ warning signals by palatable mimics. Clearwing moths (Lepidoptera: Sesiidae), incapable of inflicting painful bites or stings, resemble bees or wasps in their morphology and sometimes imitate their behaviours. An entirely unexplored type of deception in sesiids is acoustic mimicry. We recorded the buzzing sounds of two species of Southeast Asian clearwing moths, Heterosphecia pahangensis and H. hyaloptera and compared them to their visual model bee, Tetragonilla collina, and two control species of bees occurring in the same habitat. Recordings were performed on untethered, flying insects in nature. Results Based on eight acoustic parameters and wingbeat frequencies calculated from slow-motion videos, we found that the buzzes produced by both clearwing moths highly resemble those of T. collina but differ from the two control species of bees. Conclusions Acoustic similarities to bees, alongside morphological and behavioural imitations, indicate that clearwing moths display multimodal mimicry of their evolutionary models.


Zootaxa ◽  
2021 ◽  
Vol 4941 (4) ◽  
pp. 580-586
Author(s):  
XIN-YU CHEN ◽  
HUA-CHUAN ZHANG ◽  
XIAOXIAO SHI

Eminespina burma gen. et sp. nov., is described and illustrated based on a female embedded in Cretaceous Burmese amber of Cenomanian age. Autapomorphic are three unique spines distributed anterior quarter of pronotum from longer posterior part. The new evidence of Batesian mimicry in the insect fossil record is briefly discussed. 


2021 ◽  
Author(s):  
Huolin Luo ◽  
Hanwen Xiao ◽  
Yuelong Liang ◽  
Nannan Liu ◽  
Cassidy Turner ◽  
...  
Keyword(s):  

2021 ◽  
Vol 7 (2) ◽  
pp. eabd6475
Author(s):  
Shinichi Yoda ◽  
Kousuke Sakakura ◽  
Tasuku Kitamura ◽  
Yûsuke KonDo ◽  
Kazuki Sato ◽  
...  

In a Batesian mimic butterfly Papilio polytes, mimetic females resemble an unpalatable model, Pachliopta aristolochiae, but exhibit a different color pattern from nonmimetic females and males. In particular, the pale-yellow region on hind wings, which correspondingly sends important putative signals for mimicry and mate preference, is different in shape and chemical features between nonmimetic and mimetic morphs. Recently, we found that mimetic-type doublesex [dsx (H)] causes mimetic traits; however, the control of dimorphic pale-yellow colors remains unclear. Here, we revealed that dsx (H) switched the pale-yellow colors from UV-excited fluorescent type (nonmimetic) to UV-reflecting type (mimetic), by repressing the papiliochrome II synthesis genes and nanostructural changes in wing scales. Photoreceptor reactivities showed that some birds and butterflies could effectively recognize mimetic and nonmimetic pale-yellow colors, suggesting that a genetic switch in the UV response of pale-yellow colors may play essential roles in establishing the dimorphic female-limited Batesian mimicry.


Sign in / Sign up

Export Citation Format

Share Document