scholarly journals Fatty Acid and Polar Lipid Composition of the Genus Amycolatopsis: Application of Fast Atom Bombardment-Mass Spectrometry to Structure Analysis of Underivatized Phospholipids

1993 ◽  
Vol 43 (3) ◽  
pp. 414-420 ◽  
Author(s):  
A. F. Yassin ◽  
B. Haggenel ◽  
H. Budzikiewicz ◽  
K. P. Schaal
2012 ◽  
Vol 24 (1) ◽  
pp. 132 ◽  
Author(s):  
C. R. Ferreira ◽  
L. S. Eberlin ◽  
J. E. Hallett ◽  
R. G. Cooks

Mass spectrometry (MS) allows the detection and structural characterisation of intact molecules such as fatty acids and complex lipids. Desorption electrospray ionization (DESI) is an ambient ionization technique used for MS analysis and profiling and imaging of drugs, metabolites and lipids directly from biological samples with no sample preparation. With the recent introduction of morphologically friendly DESI-MS solvent systems, it is also possible to acquire DESI-MS data non-destructively. Due to the extractive nature of these solvent combinations, enough ion intensity can be generated to chemically profile samples of microscopic dimensions. The objective of this work was to perform chemical profiling on intact bovine blastocysts by DESI-MS, focusing on lipid distributions. Blastocysts produced in vitro were washed 3 times in PBS + 0.1% polyvinyl alcohol to remove lipids present in the culture medium, were placed in PBS/methanol 50% and stored under –20°C for 1 week. For DESI-MS analysis, the embryos were simply placed in glass slides and allowed to dry at room temperature. Mass spectra were acquired in the negative ion mode at the mass/charge range from m/z 150 to 1000, using as solvents a combination of 1:1 (vol/vol) ethanol:dimethylformamide (DMF) or acetonitrile:DMF. The mass spectrometer used was a LTQ linear ion trap mass spectrometer controlled by Xcalibur 2.0 software (Thermo Fisher Scientific, San Jose, CA, USA). The lipid species detected included deprotonated free fatty acids such as palmitic acid (m/z 255.2), stearic acid (m/z 283.2), arachidonic acid (m/z 311.2) and docosanoic acid (m/z 339.3). Free fatty acid dimers appear in the region from m/z 500 to 650 and complex lipids represented mainly by glycerophospholipid classes appear in the region from m/z 700 to 1000 and include phosphatidylinositols (PI 38:1; m/z 788.7), phosphatidylserines (PS 36:1, m/z 885.7) and also the chlorinated phosphatidylcholines (PC 36:1; m/z 794.7). After recording the mass spectra, embryos could still be observed in the glass slide with evident dehydration due to the action of the organic solvent. Since lipid composition of bovine embryos is closely related to cryosensitivity and due to the limited amount of analytes (each embryo is estimated to have a mass of 15 pg of total lipids) lipid analysis usually involves the pooling of individuals to have a large enough amount of analytes. Traditionally, gas chromatography is used for fatty acid residue analysis in oocytes and embryos pooled are submitted to lipid extraction and derivatization. Mass spectrometry by DESI, however, allows direct analysis of intact and single embryos and the profiling of not only free fatty acids but also complex lipids, represented mainly by 3 glycerophospholipid classes (PC, PI and PS). We envisage that DESI-MS will likely become a routine tool for the analysis of lipid composition in mammalian embryos and will contribute significantly to the development of culture systems that produce embryos with higher cryoresistance. Support from the Purdue University Center for Cancer Research Small Grants Program is gratefully acknowledged.


1984 ◽  
Vol 137 (3) ◽  
pp. 247-249 ◽  
Author(s):  
Matthew David Collins ◽  
Haroun Neamath Shah

2019 ◽  
Author(s):  
Simon A. Young ◽  
Andrew P. Desbois ◽  
Peter J. Coote ◽  
Terry K. Smith

AbstractStaphylococcus aureusis a major opportunistic pathogen that is exposed to antimicrobial innate immune effectors and antibiotics that can disrupt its cell membrane. An understanding ofS. aureuslipid composition and its role in defending the cell against membrane-disrupting agents is of fundamental importance. Common methods for characterising lipid profiles suffer shortcomings such as low sensitivity of detection and inferior resolution of the positional assignments of fatty acid chains in lipids. This present study developed a rapid and sensitive nano-electrospray ionisation tandem mass spectrometry (nESI-MS/MS) method to characterise the lipid composition of three commonly studiedS. aureusisolates: Newman, Mu50 and BB270. Confirming previous studies, nESI-MS/MS revealed that phosphatidylglycerols were most abundant inS. aureusmembranes, while diglucosyldiacylglycerols and lysyl-phosphatidylglycerols were also detected. Positional assignments for individual fatty acid chains within these lipids were also determined. Concomitantly, gas chromatography mass spectrometry of the fatty acids validated the molecular characterization and showed the principal species present in each strain were predominately anteiso- and iso-branched chain fatty acids. Though the fatty acid and lipid profiles were similar between theS. aureusstrains, this method was sufficiently sensitive to distinguish minor differences in lipid composition. In conclusion, this nESI-MS/MS methodology can characterise the role of lipids in antimicrobial resistance, and may even be applied to the rapid diagnosis of drug-resistant strains in the clinic.


1980 ◽  
Vol 48 (2) ◽  
pp. 269-276 ◽  
Author(s):  
M. GOODFELLOW ◽  
M. D. COLLINS ◽  
D. E. MINNIKIN

Sign in / Sign up

Export Citation Format

Share Document