scholarly journals Reclassification of non-pigmented Erwinia herbicola strains from trees as Erwinia billingiae sp. nov.

Author(s):  
Joris Mergaert ◽  
Lysiane Hauben ◽  
Margo C. Cnockaert ◽  
Jean Swings
2003 ◽  
Author(s):  
Charles Thomas Parker ◽  
Dorothea Taylor ◽  
George M Garrity
Keyword(s):  

1983 ◽  
Vol 29 (9) ◽  
pp. 1104-1109 ◽  
Author(s):  
D. K. Arora ◽  
A. B. Filonow ◽  
J. L. Lockwood

Erwinia herbicola, Pseudomonas fluorescens, and P. putida were strongly attracted in vitro to substances exuded by conidia of Cochliobolus victoriae and sclerotia of Macrophomina phaseolina, but not to phosphate buffer solution. Numbers of bacteria attracted to propagules of C. victoriae or M. phaseolina in an unsterilized sandy loam soil were significantly (P = 0.05) greater than background populations occurring in soil saturated with buffer. Chemotactic response was greater to C. victoriae than to M. phaseolina both in vitro and in soil. Results suggest that living fungal propagules may act as attractants for motile bacteria in soil.


2007 ◽  
Vol 73 (11) ◽  
pp. 3505-3510 ◽  
Author(s):  
Mark P. Buttner ◽  
Patricia Cruz ◽  
Linda D. Stetzenbach ◽  
Tracy Cronin

ABSTRACT This research was designed to evaluate surface sampling protocols for use with culture and quantitative PCR (QPCR) amplification assay for detection of the gram-negative bacterial biothreat simulant Erwinia herbicola on a variety of surface materials. Surfaces selected for evaluation were wood laminate, glass and computer monitor screens, metal file cabinets, plastic arena seats, nylon seat cushions, finished concrete flooring, and vinyl tile flooring. Laboratory and test chamber studies were performed to evaluate two sampling methods, a sponge and a macrofoam swab, for detection of E. herbicola on surface materials. In laboratory trials, seven materials were inoculated with a known concentration of E. herbicola cells and samples were collected from the surfaces of the materials to determine sampling efficiencies. Culture analysis was ineffective for assessing E. herbicola collection efficiency because very few culturable cells were obtained from surface samples. QPCR demonstrated that E. herbicola DNA was present in high concentrations on all of the surface samples, and sampling efficiencies ranged from 0.7 to 52.2%, depending on the sampling method and the surface material. The swab was generally more efficient than the sponge for collection of E. herbicola from surfaces. Test chamber trials were also performed in which E. herbicola was aerosolized into the chamber and allowed to settle onto test materials. Surface sampling results supported those obtained in laboratory trials. The results of this study demonstrate the capabilities of QPCR to enhance the detection and enumeration of biocontaminants on surface materials and provide information on the comparability of sampling methods.


1983 ◽  
Vol 153 (1) ◽  
pp. 222-231 ◽  
Author(s):  
L M Kozloff ◽  
M A Schofield ◽  
M Lute

1987 ◽  
Vol 35 (1) ◽  
pp. 43-54 ◽  
Author(s):  
S.F. Spoelstra

Enterobacteria were isolated from grass and from grass ensiled in laboratory silos. Strains isolated from grass belonged mainly to the Erwinia herbicola group. After ensiling, the numbers of these bacteria diminished and Escherichia coli, Hafnia alvei and Klebsiella pneumoniae became the predominant bacteria in the respective experiments. Several strains, isolated either from grass or silage, were tested for their action on nitrate degradation by adding them to grass prior to ensiling. The isolates from grass did not affect nitrate degradation, whereas those from silage increased the rate of nitrate degradation and gave higher transient concn of nitrite and nitric oxide. Results showed no direct relationship between the total number of enterobacteria on grass and its ensilability. The numbers of enterobacteria on grass that developed after ensiling were 2 orders of magnitude lower than the total number of enterobacteria originally present on the grass. (Abstract retrieved from CAB Abstracts by CABI’s permission)


1996 ◽  
Vol 42 (6) ◽  
pp. 586-592 ◽  
Author(s):  
M. Brandi ◽  
E. M. Clark ◽  
S. E. Lindow

An epiphytic strain of Erwinia herbicola (strain 299R) synthesized indole-3-acetic acid (IAA) from indole-3-pyruvic acid and indole-3-acetaldehyde, but not from indole-3-acetamide and other intermediates of various IAA biosynthetic pathways in enzyme assays. TLC, HPLC, and GC–MS analyses revealed the presence of indole-3-pyruvic acid, indole-3-ethanol, and IAA in culture supernatants of strain 299R. Indole-3-acetaldehyde was detected in enzyme assays. Furthermore, strain 299R genomic DNA shared no homology with the iaaM and iaaH genes from Pseudomonas syringae pv. savastanoi, even in Southern hybridizations performed under low-stringency conditions. These observations strongly suggest that unlike gall-forming bacteria which can synthesize IAA by indole-3-acetamide, the indole-3-pyruvic acid pathway is the primary route for IAA biosynthesis in this plant-associated strain. IAA synthesis in tryptophan-supplemented cultures of strain 299R was over 10-fold higher under nitrogen-limiting conditions, indicating a possible role for IAA production by bacterial epiphytes in the acquisition of nutrients during growth in their natural habitat.Key words: indole-3-acetic acid, Erwinia, tryptophan, indole-3-pyruvic acid, nitrogen.


Sign in / Sign up

Export Citation Format

Share Document