scholarly journals Interaction of YB-1 with human immunodeficiency virus type 1 Tat and TAR RNA modulates viral promoter activity

1999 ◽  
Vol 80 (10) ◽  
pp. 2629-2638 ◽  
Author(s):  
Sameer A. Ansari ◽  
Mahmut Safak ◽  
Gary L. Gallia ◽  
Bassel E. Sawaya ◽  
Shohreh Amini ◽  
...  

Transcriptional regulation of the human immunodeficiency virus type 1 (HIV-1) genome is mediated by viral and cellular factors. TAR, an unusual RNA regulatory element with a stem–bulge–loop structure at the 5′ ends of all nascent viral transcripts is critical for HIV-1 transcription. TAR is the target for Tat, a viral transcription factor encoded early in the HIV-1 life-cycle and essential for gene expression. Evidence demonstrating the interaction of a cellular ssDNA/RNA binding protein, YB-1, with TAR through a region which is important for Tat interaction is presented. Interestingly, results from protein–protein interaction studies revealed that YB-1 can also form a complex with Tat. Results from mapping experiments suggest that while the region spanning aa 125–203 within YB-1 is essential for its association with TAR, a truncated YB-1 spanning aa 1–125 can weakly bind to Tat. Functionally, overexpression of full-length YB-1 enhanced Tat-induced activation of the HIV-1 minimal promoter containing TAR sequences, whereas mutant YB-1 with no ability to bind to Tat and TAR failed to affect Tat-mediated activation. Expression of mutant YB-1(1–125), which binds to Tat but not RNA, decreased Tat- mediated enhancement of virus transcription. These observations suggest that while full-length YB-1 may function as a facilitator and, by interaction with both Tat and TAR, increase the level of Tat:TAR association, mutant YB-1 with no TAR binding activity, by complexing with Tat, may prevent Tat interaction with TAR. The importance of these findings in light of the proposed mechanism of Tat function is discussed.

1996 ◽  
Vol 12 (14) ◽  
pp. 1329-1339 ◽  
Author(s):  
MIKA O. SALMINEN ◽  
BO JOHANSSON ◽  
ANDERS SÖNNERBORG ◽  
SEYOUM AYEHUNIE ◽  
DEANNA GOTTE ◽  
...  

2005 ◽  
Vol 79 (22) ◽  
pp. 13839-13847 ◽  
Author(s):  
David E. Ott ◽  
Lori V. Coren ◽  
Tracy D. Gagliardi

ABSTRACT RNA appears to be required for the assembly of retroviruses. This is likely due to binding of RNA by multiple Gags, which in turn organizes and stabilizes the Gag-Gag interactions that form the virion. While the nucleocapsid (NC) domain is the most conspicuous RNA-binding region of the human immunodeficiency virus type 1 (HIV-1) Gag polyprotein, we have previously shown that NC is not strictly required for efficient particle production. To determine if an RNA requirement for HIV-1 assembly exists, we analyzed virions produced by an NC deletion mutant for the presence of RNA. The results revealed that virions without NC still contained significant amounts of RNA. Since these packaged RNAs are probably incorporated by other RNA-binding sequences in Gag, an RNA-binding site in the matrix protein (MA) of Gag was mutated. While this mutation did not interfere with HIV-1 replication, a construct with both MA and NC mutations (MX/NX) failed to produce particles. The MX/NX mutant was rescued in trans by coassembly with several forms of Gag: wild-type Gag, either of the single-mutant Gags, or Gag truncations that contain MA or NC sequences. Addition of basic sequences to the MX/NX mutant partially restored particle production, consistent with a requirement for Gag-RNA binding in addition to Gag-Gag interactions. Together, these results support an RNA-binding requirement for Gag assembly, which relies on binding of RNA by MA or NC sequences to condense, organize, and stabilize the HIV-1 Gag-Gag interactions that form the virion.


2001 ◽  
Vol 82 (3) ◽  
pp. 575-580 ◽  
Author(s):  
D. Paraskevis ◽  
M. Magiorkinis ◽  
A. M. Vandamme ◽  
L. G. Kostrikis ◽  
A. Hatzakis

Human immunodeficiency virus type 1 (HIV-1) has been classified into three main groups and 11 distinct subtypes. Moreover, several circulating recombinant forms (CRFs) of HIV-1 have been recently documented to have spread widely causing extensive HIV-1 epidemics. A subtype, initially designated I (CRF04_cpx), was documented in Cyprus and Greece and was found to comprise regions of sequence derived from subtypes A and G as well as regions of unclassified sequence. Re-analysis of the three full-length CRF04_cpx sequences that were available revealed a mosaic genomic organization of unique complexity comprising regions of sequence from at least five distinct subtypes, A, G, H, K and unclassified regions. These strains account for approximately 2% of the total HIV-1-infected population in Greece, thus providing evidence of the great capability of HIV-1 to recombine and produce highly divergent strains which can be spread successfully through different infection routes.


1999 ◽  
Vol 73 (5) ◽  
pp. 4427-4432 ◽  
Author(s):  
Vladimir A. Novitsky ◽  
Monty A. Montano ◽  
Mary F. McLane ◽  
Boris Renjifo ◽  
Fredrik Vannberg ◽  
...  

ABSTRACT To better understand the virological aspect of the expanding AIDS epidemic in southern Africa, a set of 23 near-full-length clones of human immunodeficiency virus type 1 (HIV-1) representing eight AIDS patients from Botswana were sequenced and analyzed phylogenetically. All study viruses from Botswana belonged to HIV-1 subtype C. The interpatient diversity of the clones from Botswana was higher than among full-length isolates of subtype B or among a set of full-length HIV-1 genomes of subtype C from India (mean value of 9.1% versus 6.5 and 4.3%, respectively; P < 0.0001 for both comparisons). Similar results were observed in all genes across the entire viral genome. We suggest that the high level of HIV-1 diversity might be a typical feature of the subtype C epidemic in southern Africa. The reason or reasons for this diversity are unclear, but may include an altered replication efficiency of HIV-1 subtype C and/or the multiple introduction of different subtype C viruses.


2003 ◽  
Vol 77 (2) ◽  
pp. 1469-1480 ◽  
Author(s):  
James S. Buckman ◽  
William J. Bosche ◽  
Robert J. Gorelick

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) containing mutations in the nucleocapsid (NC) Zn2+ finger domains have greatly reduced infectivity, even though genome packaging is largely unaffected in certain cases. To examine replication defects, viral DNA (vDNA) was isolated from cells infected with viruses containing His-to-Cys changes in their Zn2+ fingers (NCH23C and NCH44C), an integrase mutant (IND116N), a double mutant (NCH23C/IND116N), or wild-type HIV-1. In vitro assays have established potential roles for NC in reverse transcription and integration. In vivo results for these processes were obtained by quantitative PCR, cloning of PCR products, and comparison of the quantity and composition of vDNA generated at discrete points during reverse transcription. Quantitative analysis of the reverse transcription intermediates for these species strongly suggests decreased stability of the DNA produced. Both Zn2+ finger mutants appear to be defective in DNA synthesis, with the minus- and plus-strand transfer processes being affected while interior portions of the vDNA remain more intact. Sequences obtained from PCR amplification and cloning of 2-LTR circle junction fragments revealed that the NC mutants had a phenotype similar to the IN mutant; removal of the terminal CA dinucleotides necessary for integration of the vDNA is disabled by the NC mutations. Thus, the loss of infectivity in these NC mutants in vivo appears to result from defective reverse transcription and integration processes stemming from decreased protection of the full-length vDNA. Finally, these results indicate that the chaperone activity of NC extends from the management of viral RNA through to the full-length vDNA.


2005 ◽  
Vol 79 (20) ◽  
pp. 12763-12772 ◽  
Author(s):  
Chi L. Ong ◽  
Janine C. Thorpe ◽  
Paul R. Gorry ◽  
Sylvie Bannwarth ◽  
Anthony Jaworowski ◽  
...  

ABSTRACT Acute human immunodeficiency virus type 1 (HIV-1) replication in astrocytes produces minimal new virus particles due, in part, to inefficient translation of viral structural proteins despite high levels of cytoplasmic viral mRNA. We found that a highly reactive double-stranded (ds) RNA-binding protein kinase (PKR) response in astrocytes underlies this inefficient translation of HIV-1 mRNA. The dsRNA elements made during acute replication of HIV-1 in astrocytes triggers PKR activation and the specific inhibition of HIV-1 protein translation. The heightened PKR response results from relatively low levels of the cellular antagonist of PKR, the TAR RNA binding protein (TRBP). Efficient HIV-1 production was restored in astrocytes by inhibiting the innate PKR response to HIV-1 dsRNA with dominant negative PKR mutants, or PKR knockdown by siRNA gene silencing. Increasing the expression of TRBP in astrocytes restored acute virus production to levels comparable to those observed in permissive cells. Therefore, the robust innate PKR antiviral response in astrocytes results from relatively low levels of TRBP expression and contributes to their restricted infection. Our findings highlight TRBP as a novel cellular target for therapeutic interventions to block productive HIV-1 replication in cells that are fully permissive for HIV-1 infection.


1999 ◽  
Vol 73 (1) ◽  
pp. 152-160 ◽  
Author(s):  
Kavita S. Lole ◽  
Robert C. Bollinger ◽  
Ramesh S. Paranjape ◽  
Deepak Gadkari ◽  
Smita S. Kulkarni ◽  
...  

ABSTRACT The development of an effective human immunodeficiency virus type 1 (HIV-1) vaccine is likely to depend on knowledge of circulating variants of genes other than the commonly sequenced gag andenv genes. In addition, full-genome data are particularly limited for HIV-1 subtype C, currently the most commonly transmitted subtype in India and worldwide. Likewise, little is known about sequence variation of HIV-1 in India, the country facing the largest burden of HIV worldwide. Therefore, the objective of this study was to clone and characterize the complete genome of HIV-1 from seroconverters infected with subtype C variants in India. Cocultured HIV-1 isolates were obtained from six seroincident individuals from Pune, India, and virtually full-length HIV-1 genomes were amplified, cloned, and sequenced from each. Sequence analysis revealed that five of the six genomes were of subtype C, while one was a mosaic of subtypes A and C, with multiple breakpoints in env,nef, and the 3′ long terminal repeat as determined by both maximal χ2 analysis and phylogenetic bootstrapping. Sequences were compared for preservation of known cytotoxic T lymphocyte (CTL) epitopes. Compared with those of the HIV-1LAI sequence, 38% of well-defined CTL epitopes were identical. The proportion of nonconservative substitutions for Env, at 61%, was higher (P < 0.001) than those for Gag (24%), Pol (18%), and Nef (32%). Therefore, characterized CTL epitopes demonstrated substantial differences from subtype B laboratory strains, which were most pronounced in Env. Because these clones were obtained from Indian seroconverters, they are likely to facilitate vaccine-related efforts in India by providing potential antigens for vaccine candidates as well as for assays of vaccine responsiveness.


2008 ◽  
Vol 82 (16) ◽  
pp. 8038-8050 ◽  
Author(s):  
Joseph A. Jablonski ◽  
Emanuele Buratti ◽  
Cristiana Stuani ◽  
Massimo Caputi

ABSTRACT Splicing of human immunodeficiency virus type 1 (HIV-1) exon 6D is regulated by the presence of a complex splicing regulatory element (SRE) sequence that interacts with the splicing factors hnRNP H and SC35. In this work, we show that, in the context of the wild-type viral sequence, hnRNP H acts as a repressor of exon 6D inclusion independent of its binding to the SRE. However, hnRNP H binding to the SRE acts as an enhancer of exon 6D inclusion in the presence of a critical T-to-C mutation. These seemingly contrasting functional properties of hnRNP H appear to be caused by a change in the RNA secondary structure induced by the T-to-C mutation that affects the spatial location of bound hnRNP H with respect to the exon 6D splicing determinants. We propose a new regulatory mechanism mediated by RNA folding that may also explain the dual properties of hnRNP H in splicing regulation.


Sign in / Sign up

Export Citation Format

Share Document