scholarly journals Comparative Toxicity of Bacillus thuringiensis var. israelensis Crystal Proteins in vivo and in vitro

Microbiology ◽  
1988 ◽  
Vol 134 (9) ◽  
pp. 2551-2558 ◽  
Author(s):  
C. N. Chilcott ◽  
D. J. Ellar
2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Lidia Mariana Fiuza ◽  
Neiva Knaak ◽  
Rogério Fernando Pires da Silva ◽  
João Antônio Pêgas Henriques

Bioassays with insecticidal crystal proteins (ICPs) from Bacillus thuringiensis have demonstrated that Cry1Aa, Cry1Ac, and Cry1Ba are the most active toxins on larvae of the Anticarsia gemmatalis. The toxins Cry1Da and Cry1Ea are less toxic, and toxins Cry2Aa are not active. Binding of these ICPs to midgut sections of the A. gemmatalis larvae was studied using streptavidin-mediated detection. The observed staining patterns showed that Cry1Aa and Cry1Ac bound to the brush border throughout the whole length of the midgut. However, the binding sites of Cry1Ba were not evenly distributed in the midgut microvilli. The in vivo assays against larvae of 2nd instar A. gemmatalis confirmed the results from the in vitro binding studies. These binding data correspond well with the bioassay results, demonstrating a correlation between receptors binding and toxicity of the tested ICPs in this insect.


1959 ◽  
Vol 5 (2) ◽  
pp. 161-168 ◽  
Author(s):  
Ellicott McConnell ◽  
A. Glenn Richards

Bacillus thuringiensis Berliner produces in vitro a heat-stable, dialyzable substance which is toxic for insects when injected. The same or a similar substance is produced in vivo. The toxic principle is of unknown composition. It is heat-stable, water-soluble, dialyzable, and resistant to low temperatures. It is probably neither a protein nor a lipid. Clearly it is distinct from the heat-labile inclusion bodies and from lecithinase. Growth-curve studies showed that the heat-stable toxin appeared in liver broth cultures during the active growth phase, prior to the formation of spores or inclusion bodies. An attempt to produce the toxic principle from culture media in the absence of bacteria was unsuccessful from sterile inocula both from in vivo and in vitro sources. The LD50 for larvae of Galleria mellonella injected with autoclaved supernatant from a 10-day-old liver broth culture of B. thuringiensis was determined to be 0.00036 ml per larva or 0.002 ml per gram of larvae. Approximately the same level of toxicity was found for another caterpillar, a fly larva, and cockroaches. After larvae of Galleria or Pyrausla have been dead for more than 2 days from infection with B. thuringiensis the bacillus could no longer be recovered. A sublethal amount of the heat-stable toxin injected into old larvae of Galleria delayed emergence of the adults by 30 to 40%. The non-pathogenic Bacillus cereus was found to produce a similar-acting, heat-stable toxin under the same conditions that one is produced by B. thuringiensis.


2002 ◽  
Vol 48 (3) ◽  
pp. 262-267 ◽  
Author(s):  
J Koskella ◽  
G Stotzky

The insecticidal toxins from Bacillus thuringiensis subspp. kurstaki (antilepidopteran), morrisoni strain tenebrionis (anticoleopteran), and israelensis (antidipteran) did not affect the growth of a variety of bacteria (8 gram-negative, 5 gram-positive, and a cyanobacterium), fungi (2 Zygomycetes, 1 Ascomycete, 2 Deuteromycetes, and 2 yeasts), and algae (primarily green and diatoms) in pure and mixed culture, as determined by dilution, disk-diffusion, and sporulation assays with purified free and clay-bound toxins. The insecticidal crystal proteins from B. thuringiensis subspp. kurstaki and israelensis had no antibiotic effect on various gram-positive bacteria.Key words: insecticidal toxins, Bacillus thuringiensis, microbiostatic, microbicidal.


Nanomedicine ◽  
2019 ◽  
Vol 14 (4) ◽  
pp. 375-385 ◽  
Author(s):  
M Natalia Calienni ◽  
Cristian R Lillo ◽  
M Jimena Prieto ◽  
Roxana M Gorojod ◽  
Silvia del V Alonso ◽  
...  

Toxins ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 252
Author(s):  
Jiaxin Qin ◽  
Zongxing Tong ◽  
Yiling Zhan ◽  
Christophe Buisson ◽  
Fuping Song ◽  
...  

Bacillus thuringiensis (Bt) is used for insect pest control, and its larvicidal activity is primarily attributed to Cry toxins. Other factors participate in infection, and limited information is available regarding factors acting on the peritrophic matrix (PM). This study aimed to investigate the role of a Bt chitin-binding protein (CBPA) that had been previously shown to be expressed at pH 9 in vitro and could therefore be expressed in the alkaline gut of lepidopteron larvae. A ∆cbpA mutant was generated that was 10-fold less virulent than wild-type Bt HD73 towards Ostrinia furnacalis neonate larvae, indicating its important role in infection. Purified recombinant Escherichia coli CBPA was shown to have a chitin affinity, thus indicating a possible interaction with the chitin-rich PM. A translational GFP–CBPA fusion elucidated the localization of CBPA on the bacterial surface, and the transcriptional activity of the promoter PcbpA was immediately induced and confirmed at pH 9. Next, in order to connect surface expression and possible in vivo gut activity, last instar Galleria mellonella (Gm) larvae (not susceptible to Bt HD-73) were used as a model to follow CBPA in gut expression, bacterial transit, and PM adhesion. CBPA-GFP was quickly expressed in the Gm gut lumen, and more Bt HD73 strain bacteria adhered to the PM than those of the ∆cbpA mutant strain. Therefore, CBPA may help to retain the bacteria, via the PM binding, close to the gut surface and thus takes part in the early steps of Bt gut interactions.


2006 ◽  
Vol 188 (21) ◽  
pp. 7592-7599 ◽  
Author(s):  
Chi-Ling Tseng ◽  
Hui-Ju Chen ◽  
Gwo-Chyuan Shaw

ABSTRACTA gene that codes for a novel intracellular poly-3-hydroxybutyrate (PHB) depolymerase has now been identified in the genome ofBacillus thuringiensissubsp.israelensisATCC 35646. This gene, previously annotated as a hypothetical 3-oxoadipate enol-lactonase (PcaD) gene and now designatedphaZ, encodes a protein that shows no significant similarity with any known PHB depolymerase. Purified His-tagged PhaZ could efficiently degrade trypsin-activated native PHB granules as well as artificial amorphous PHB granules and release 3-hydroxybutyrate monomer as a hydrolytic product, but it could not hydrolyze denatured semicrystalline PHB. In contrast, purified His-tagged PcaD ofPseudomonas putidawas unable to degrade trypsin-activated native PHB granules and artificial amorphous PHB granules. TheB. thuringiensisPhaZ was inactive againstp-nitrophenylpalmitate, tributyrin, and triolein. Sonication supernatants of the wild-typeB. thuringiensiscells exhibited a PHB-hydrolyzing activity in vitro, whereas those prepared from aphaZmutant lost this activity. ThephaZmutant showed a higher PHB content than the wild type at late stationary phase of growth in a nutrient-rich medium, indicating that this PhaZ can function as a PHB depolymerase in vivo. PhaZ contains a lipase box-like sequence (G-W-S102-M-G) but lacks a signal peptide. A purified His-tagged S102A variant had lost the PHB-hydrolyzing activity. Taken together, these results indicate thatB. thuringiensisharbors a new type of intracellular PHB depolymerase.


PLoS ONE ◽  
2012 ◽  
Vol 7 (6) ◽  
pp. e38534 ◽  
Author(s):  
Fengjuan Zhang ◽  
Donghai Peng ◽  
Xiaobo Ye ◽  
Ziquan Yu ◽  
Zhenfei Hu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document